K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: x<>-2

\(\dfrac{x-3}{x+2}>=0\)

TH1: \(\left\{{}\begin{matrix}x-3>=0\\x+2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=3\\x>-2\end{matrix}\right.\)

=>x>=3

TH2: \(\left\{{}\begin{matrix}x-3< =0\\x+2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =3\\x< -2\end{matrix}\right.\)

=>x<-2

29 tháng 6 2021

Thấy : \(\sqrt{x}\ge0\)

\(\Rightarrow P=\dfrac{\sqrt{x}+2}{2\sqrt{x}+1}>0\)

\(\Rightarrow\left|P\right|=P\)

Ta có : \(\left|P\right|=P\ge P\)

=> P = P .

Vậy \(\forall x>0\) TMYC đè bài

29 tháng 6 2021

Ơ câu này giống câu ở dưới thế ?_? Lặp câu hỏi à bạn :v

30 tháng 7 2018

mk giải 1 bài lm mẩu nha .

+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)

vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)

vậy giá trị nhỏ nhất của \(A\)\(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)

mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :

30 tháng 7 2018

lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :

DƯƠNG PHAN KHÁNH DƯƠNG

17 tháng 10 2023

\(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)^2}\)

\(P=-\dfrac{1}{3}\)

\(\Rightarrow\left(\sqrt{x}+3\right)^2=3\sqrt{x}+3\)

\(\Leftrightarrow x-\sqrt{x}+6=0\)

\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)=0\)

\(\Leftrightarrow x=9\left(Vì\sqrt{x}+2>0\right)\)

\(P=-\left(\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}+3\right)^2}\right)=-\left(\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)^2}\right)< -3< -1\)

Bài 1:

Để biểu thức nhận giá trị nguyên thì \(3\sqrt{x}+1⋮2\sqrt{x}-1\)

\(\Leftrightarrow6\sqrt{x}+2⋮2\sqrt{x}-1\)

\(\Leftrightarrow2\sqrt{x}-1\in\left\{1;-1;5\right\}\)

\(\Leftrightarrow2\sqrt{x}\in\left\{2;0;6\right\}\)

hay \(x\in\left\{4;0;36\right\}\)

23 tháng 8 2021

giúp e b2

 

27 tháng 10 2021

 1) \(A=\dfrac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(2x-2\sqrt{x}\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(A=\dfrac{2\sqrt{9}-1}{\sqrt{9}+1}=\dfrac{5}{4}\)

c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}< 1\Rightarrow2\sqrt{x}-1< \sqrt{x}+1\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

27 tháng 10 2021

\(1,A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\\ 2,x=9\Leftrightarrow A=\dfrac{6-1}{3+1}=\dfrac{5}{4}\\ 3,A< 1\Leftrightarrow\dfrac{2\sqrt{x}-1-\sqrt{x}-1}{\sqrt{x}+1}< 0\\ \Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\Leftrightarrow\sqrt{x}-2< 0\left(\sqrt{x}+1>0\right)\\ \Leftrightarrow x< 4\Leftrightarrow0\le x< 4\)

2 tháng 7 2021

câu a tham khảo ở đây

https://hoc24.vn/cau-hoi/.1145652136620

b) \(x=25\Rightarrow P=\dfrac{\sqrt{25}+1}{\sqrt{25}-3}=\dfrac{6}{2}=3\)

c) \(A< 1\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}< 1\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\Rightarrow\dfrac{4}{\sqrt{x}-3}< 0\)

mà \(4>0\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0\le x< 9,x\ne4\)

 

2 tháng 7 2021

ở câu b cái chỗ biểu thức P đó sửa thành A giùm mình,mình đánh nhầm

5 tháng 5 2021

tìm cả đk giúp mik vs

NV
5 tháng 5 2021

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)

b.

\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)

\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)

c.

Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)

Ta có:

\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)

31 tháng 8 2021

a, ĐK: \(x\ge0;x\ne9\)

\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=-\dfrac{3}{\sqrt{x}-3}\)

31 tháng 8 2021

b, \(P>0\Leftrightarrow-\dfrac{3}{\sqrt{x}-3}>0\)

\(\Leftrightarrow\sqrt{x}-3>0\)

\(\Leftrightarrow x>9\)

c, \(P=-\dfrac{3}{\sqrt{x}-3}\in Z\)

\(\Leftrightarrow\sqrt{x}-3\inƯ_3=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;4;6\right\}\)

\(\Leftrightarrow x\in\left\{0;4;16;36\right\}\)

NV
29 tháng 3 2022

\(m>1\Rightarrow ac=-m-3< 0\Rightarrow\) pt luôn có 2 nghiệm trái dấu

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

\(A=\dfrac{2\left(x_1+x_2\right)^2-6x_1x_2}{x_1+x_2}=\dfrac{2.4\left(m-1\right)^2+6\left(m+3\right)}{2\left(m-1\right)}\)

\(=\dfrac{4\left(m-1\right)^2+3\left(m-1\right)+12}{m-1}=4\left(m-1\right)+\dfrac{12}{m-1}+3\)

\(A\ge2\sqrt{4\left(m-1\right).\dfrac{12}{m-1}}+3=3+8\sqrt{3}\)

Dấu "=" xảy ra khi \(4\left(m-1\right)=\dfrac{12}{m-1}\Rightarrow m=1+\sqrt{3}\)