Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\dfrac{x+1}{17}\right)+\left(1+\dfrac{x+2}{16}\right)=\left(1+\dfrac{x+3}{15}\right)+\left(1+\dfrac{x+4}{14}\right)\)
\(\dfrac{x+18}{17}+\dfrac{x+18}{16}=\dfrac{x+18}{15}+\dfrac{x+18}{14}\)
\(\dfrac{x+18}{17}+\dfrac{x+18}{16}-\dfrac{x+18}{15}-\dfrac{x+18}{14}=0\)
\(\left(x+18\right)\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)=0\)
Vì : \(\dfrac{1}{17}< \dfrac{1}{15};\dfrac{1}{16}< \dfrac{1}{14}\Rightarrow\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}< 0\)
\(\Rightarrow x+18=0\Rightarrow x=0-18=-18\)
Từ đầu đến đến dòng thứ tư thì mình đồng ý, nhưng mình nghĩ không nhất thiết phải so sánh, chỉ cần làm tiếp như sau:
\(\Leftrightarrow\left(x+18\right)\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+18=0\\\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}=0\end{matrix}\right.\)
rồi tính tiếp là OK rồi. Dù gì thì cũng xin cảm ơn nha ;)
\(\dfrac{x-1}{10}+\dfrac{x-2}{11}+\dfrac{x-3}{12}=\dfrac{x-4}{13}+\dfrac{x-5}{14}+\dfrac{x-6}{15}\)
Dựa vào t/c dãy tỉ số = nhau ta có:
\(\dfrac{x-1+x-2+x-3}{10+11+12}=\dfrac{x-4+x-5+x-6}{13+14+15}\)
\(\dfrac{3x-6}{33}=\dfrac{3x-15}{42}\)
\(42\left(3x-6\right)=33\left(3x-15\right)\)
\(126x-252=99x-495\)
\(126-99x=594-252\)
\(27x=342\)
\(x=\dfrac{38}{3}\)
1) \(\left(-1\dfrac{1}{5}+x\right):\left(-3\dfrac{3}{5}\right)=\dfrac{-7}{4}+\dfrac{1}{4}:\dfrac{1}{8}\)
\(\Leftrightarrow\left(-1\dfrac{1}{5}+x\right):\left(-3\dfrac{3}{5}\right)=\dfrac{-7}{4}+2\)
\(\Leftrightarrow\left(-1\dfrac{1}{5}+x\right):\left(-3\dfrac{3}{5}\right)=\dfrac{1}{4}\)
\(\Leftrightarrow-1\dfrac{1}{5}+x=\dfrac{1}{4}.\left(-3\dfrac{3}{5}\right)\)
\(\Leftrightarrow-1\dfrac{1}{5}+x=\dfrac{1}{4}.\left(-\dfrac{18}{5}\right)\)
\(\Leftrightarrow-1\dfrac{1}{5}+x=-\dfrac{9}{10}\)
\(\Leftrightarrow x=\left(-\dfrac{9}{10}\right)-\left(-1\dfrac{1}{5}\right)\)
\(\Leftrightarrow x=\dfrac{3}{10}\)
\(a.-8:\left(4\dfrac{1}{5}x+\dfrac{3}{10}\right)=4\dfrac{4}{9}\)
\(4\dfrac{1}{5}x+\dfrac{3}{10}=\left(-8\right):4\dfrac{4}{9}\)
\(4\dfrac{1}{5}x+\dfrac{3}{10}=\dfrac{-9}{5}\)
\(4\dfrac{1}{5}x=\dfrac{-9}{5}-\dfrac{3}{10}\)
\(4\dfrac{1}{5}x=\dfrac{-21}{10}\)
\(x=\dfrac{-21}{10}:\dfrac{21}{5}\)
\(x=\dfrac{-1}{2}\)
Vay \(x=\dfrac{-1}{2}\).
\(b.4\dfrac{2}{3}-\left(\dfrac{3}{5}:x\right)=-20\%\)
\(\dfrac{14}{3}-\left(\dfrac{3}{5}:x\right)=\dfrac{-1}{5}\)
\(\dfrac{3}{5}:x=\dfrac{14}{3}-\dfrac{-1}{5}\)
\(\dfrac{3}{5}:x=\dfrac{73}{15}\)
\(x=\dfrac{3}{5}:\dfrac{73}{15}\)
\(x=\dfrac{9}{73}\)
Vay \(x=\dfrac{9}{73}\).
Câu c; d; e tương tự nhé.
Ta có: \(\dfrac{x+1}{17}+\dfrac{x+2}{16}=\dfrac{x+3}{15}+\dfrac{x+4}{14}\)
\(\Rightarrow\dfrac{x+1}{17}+1+\dfrac{x+2}{16}+1=\dfrac{x+3}{15}+1+\dfrac{x+4}{14}+1\)
\(\Rightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}=\dfrac{x+18}{15}+\dfrac{x+18}{14}\)
\(\Rightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}-\dfrac{x+18}{15}-\dfrac{x+18}{14}=0\)
\(\Rightarrow\left(x+18\right).\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)=0\) (1)
Mà \(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\ne0\) (2)
Từ (1) và (2) => x+18=0 => x=-18
Vậy x=-18
a: \(A=\dfrac{-7}{28}\cdot\dfrac{15}{25}=\dfrac{-1}{4}\cdot\dfrac{3}{5}=\dfrac{-3}{20}\)
b: \(B=\dfrac{-5\cdot7}{14\cdot\left(-3\right)}=\dfrac{35}{42}=\dfrac{5}{6}\)
c: \(C=\dfrac{-1}{5}-\dfrac{1}{5}\cdot\dfrac{3}{5}=\dfrac{-1}{5}-\dfrac{3}{25}=\dfrac{-8}{25}\)
d: \(D=\dfrac{-3}{4}-\dfrac{1}{4}=-1\)
e: \(E=\dfrac{-4}{5}\left(1-\dfrac{15}{16}\right)=\dfrac{-4}{5}\cdot\dfrac{1}{16}=\dfrac{-1}{20}\)
f: \(F=\dfrac{6-7}{4}\cdot\dfrac{4+12}{22}=\dfrac{-1}{4}\cdot\dfrac{8}{11}=\dfrac{-2}{11}\)
\(1\dfrac{3}{5}+0,25\cdot\dfrac{16}{15}-\dfrac{13}{15}\\ =\dfrac{8}{5}+\dfrac{1}{4}\cdot\dfrac{16}{15}-\dfrac{13}{15}\\ =\dfrac{8}{5}+\dfrac{4}{15}-\dfrac{13}{15}\\ =\dfrac{8}{5}-\dfrac{3}{5}\\ =1\)
\(1\dfrac{3}{5}\)+0,25 x \(\dfrac{16}{15}-\dfrac{13}{15}\)
=\(\dfrac{8}{5}+\dfrac{1}{4}\) x \(\dfrac{1}{5}\)
=\(\dfrac{8}{5}+\dfrac{1}{20}\)
=\(\dfrac{32}{20}+\dfrac{1}{20}\)
=\(\dfrac{33}{20}\)
9) \(\dfrac{x}{4}=\dfrac{9}{x}\)
Theo định nghĩa về hai phân số bằng nhau, ta có:
\(4\cdot9=x^2\\ 36=x^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
8)
\(x:\dfrac{5}{3}+\dfrac{1}{3}=-\dfrac{2}{5}\\ x:\dfrac{5}{3}=-\dfrac{2}{5}+\dfrac{1}{3}\\ x:\dfrac{5}{3}=-\dfrac{1}{15}\\ x=\dfrac{1}{15}\cdot\dfrac{5}{3}\\ x=\dfrac{1}{9}\)
7)
\(2x-16=40+x\\ 2x-x=40+16\\ x\left(2-1\right)=56\\ x=56\)
6)
\(1\dfrac{1}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}-\dfrac{3}{2}=-7-x\\ -7-x=0\\ x=-7-0\\ x=-7\)
5)
\(3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{7}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{7}{2}-\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{17}{6}\\ x=\dfrac{17}{6}:\dfrac{1}{2}\\ x=\dfrac{17}{3}\)
4)
\(x\cdot\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
3)
\(\left(\dfrac{2x}{5}+2\right):\left(-4\right)=-1\dfrac{1}{2}\\ \left(\dfrac{2x}{5}+2\right):\left(-4\right)=-\dfrac{3}{2}\\ \dfrac{2x}{5}+2=-\dfrac{3}{2}\cdot\left(-4\right)\\ \dfrac{2x}{5}+2=6\\ \dfrac{2x}{5}=6-2\\ \dfrac{2x}{5}=4\\ 2x=4\cdot5\\ 2x=20\\ x=20:2\\ x=10\)
2)
\(\dfrac{1}{3}+\dfrac{1}{2}:x=-0,25\\ \dfrac{1}{3}+\dfrac{1}{2}:x=-\dfrac{1}{4}\\ \dfrac{1}{2}:x=-\dfrac{1}{4}-\dfrac{1}{3}\\ \dfrac{1}{2}:x=-\dfrac{7}{12}\\ x=\dfrac{1}{2}:-\dfrac{7}{12}\\ x=-\dfrac{6}{7}\)
1)
\(\dfrac{4}{3}+x=\dfrac{2}{15}\\ x=\dfrac{2}{15}-\dfrac{4}{3}x=-\dfrac{6}{5}\)
a, 15 - 2 | x + \(\dfrac{1}{3}\)| = \(\dfrac{4}{7}\)
=>2| x + \(\dfrac{1}{3}\)| = 15 - \(\dfrac{4}{7}\)
=> 2 | x + \(\dfrac{1}{3}\)| =\(\dfrac{101}{7}\)
=> | x + \(\dfrac{1}{3}\)| = \(\dfrac{101}{14}\)
=> x+ \(\dfrac{1}{3}\)= \(\dfrac{101}{14}\) hoặc x +\(\dfrac{1}{3}\)= - \(\dfrac{101}{14}\)
+) x+\(\dfrac{1}{3}\)= \(\dfrac{101}{14}\)=> x = \(\dfrac{302}{3}\)
+) x + \(\dfrac{1}{3}\)= - \(\dfrac{101}{14}\)=> x =-\(\dfrac{317}{42}\)
Vậy ...........
b, \(\dfrac{13}{11}\).\(\dfrac{22}{26}\)-x2=\(\dfrac{7}{16}\)
=>1 -x2 = \(\dfrac{7}{16}\)
=> x2= \(\dfrac{9}{16}\)
=> x= \(\dfrac{3}{4}\)hoặc x = -\(\dfrac{3}{4}\)
Vậy ..................
\(a,15-2\left|x+\dfrac{1}{3}\right|=\dfrac{4}{7}\)
\(2\left|x+\dfrac{1}{3}\right|=15-\dfrac{4}{7}\)
\(2\left|x+\dfrac{1}{3}\right|=\dfrac{101}{7}\)
\(\left|x+\dfrac{1}{3}\right|=\dfrac{101}{7}:2\)
\(\left|x+\dfrac{1}{3}\right|=\dfrac{101}{14}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{101}{14}\) hoặc \(x+\dfrac{1}{3}=-\dfrac{101}{14}\)
\(x=\dfrac{101}{14}-\dfrac{1}{3}\) \(x=-\dfrac{101}{14}-\dfrac{1}{3}\)
\(x=\dfrac{302}{3}\) \(x=-\dfrac{317}{42}\)
\(B=\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\left(1+\dfrac{1}{24}\right).....\left(1+\dfrac{1}{440}\right)\left(1+\dfrac{1}{483}\right)\)
\(B=\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}.....\dfrac{441}{440}.\dfrac{484}{483}\)
\(B=\dfrac{9.16.25.....441.484}{8.15.24.....440.483}\)
\(B=\dfrac{3.3.4.4.5.5.....21.21.22.22}{2.4.3.5.4.6.....20.22.21.23}\)
\(B=\dfrac{3.4.5.....21.22}{2.3.4.....20.21}.\dfrac{3.4.5.....21.22}{4.5.6.....22.23}\)
\(B=11.\dfrac{3}{23}=\dfrac{33}{23}\)
B = \(\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}...\dfrac{121}{120}.\dfrac{144}{143}\)
B = \(\dfrac{4.9.16.25...121.144}{3.8.15.24....120.143}\)
B = \(\dfrac{2.2.3.3.4.4.5.5...11.11.12.12}{1.3.2.4.3.5.4.6...10.12.11.13}\)
B = \(\dfrac{2.3.4.5...11.12}{1.2.3.4.5...10.11}.\dfrac{2.3.4.5...11.12}{3.4.5.6.7...12.13}\)
B = 12 . \(\dfrac{2}{13}\)
B = \(\dfrac{24}{13}\)
`(x-3)/13+(x-3)/14=(x-3)/15+(x-3)/16`
`=>(x-3).(1/13+1/14-1/15-1/16)=0`
`=>x-3=0`
`=>x=3`
\(\dfrac{x-3}{13}+\dfrac{x-3}{14}=\dfrac{x-3}{15}+\dfrac{x-3}{16}\)
\(\Leftrightarrow\dfrac{x-3}{13}+\dfrac{x-3}{14}-\dfrac{x-3}{15}-\dfrac{x-3}{16}=0\)
\(\Leftrightarrow\left(x-3\right).\left(\dfrac{1}{13}+\dfrac{1}{14}-\dfrac{1}{15}-\dfrac{1}{16}\right)=0\)
\(\Leftrightarrow x-3=0\)( Vì \(\dfrac{1}{13}+\dfrac{1}{14}-\dfrac{1}{15}-\dfrac{1}{16}>0\))
\(\Leftrightarrow x-3=0\Rightarrow x=3\)