Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ghi thiếu đề hoặc đề sai không vậy??
Biểu thức không bằng một giá trị nào đó thì sao tìm x được :>
1)
ĐKXĐ: x>4
Ta có: \(\dfrac{\sqrt{x+5}}{\sqrt{x-4}}=\dfrac{\sqrt{x-2}}{\sqrt{x+3}}\)
\(\Leftrightarrow x^2+8x+15=x^2-6x+8\)
\(\Leftrightarrow8x+6x=8-15\)
\(\Leftrightarrow14x=-7\)
hay \(x=-\dfrac{1}{2}\)(loại)
2) Ta có: \(\sqrt{4x^2-9}=3\sqrt{2x-3}\)
\(\Leftrightarrow\sqrt{2x-3}\left(\sqrt{2x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
\(1,\sqrt{5x^2-2x+2}=x+1\)
\(\Leftrightarrow\left(\sqrt{5x^2-2x+2}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow5x^2-2x+2=x^2+2x+1\)
\(\Leftrightarrow5x^2-x^2-2x-2x=1-2\)
\(\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(S=\left\{\dfrac{1}{2}\right\}\)
\(2,\sqrt{4x^2-x+1}-2x=3\)
\(\Leftrightarrow\left(\sqrt{4x^2-x+1}\right)^2=\left(3+2x\right)^2\)
\(\Leftrightarrow4x^2-x+1=9+12x+4x^2\)
\(\Leftrightarrow4x^2-4x^2-x-12x=9-1\)
\(\Leftrightarrow-13x=8\)
\(\Leftrightarrow x=-\dfrac{8}{13}\)
Vậy \(S=\left\{-\dfrac{8}{13}\right\}\)
1: =>x>=-1 và 5x^2-2x+2=x^2+2x+1
=>x>=-1 và 4x^2-4x+1=0
=>x=1/2
2: =>\(\sqrt{4x^2-x+1}=2x+3\)
=>x>=-3/2 và 4x^2-x+1=4x^2+12x+9
=>x>=-3/2 và -11x=8
=>x=-8/11(nhận)
\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{3}{2-\sqrt{x}}+\dfrac{3\sqrt{x}-2}{x-2}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{2\sqrt{x}-x}\right)=\dfrac{x-2\sqrt{x}+3\sqrt{x}+6+3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
a: Ta có: \(3\sqrt{5a}-\sqrt{20a}+\sqrt{45a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+3\sqrt{5a}\)
\(=4\sqrt{5a}\)
b: Ta có: \(\sqrt{160a^2}+\dfrac{1}{2}\sqrt{40a^2}-3\sqrt{90a^2}\)
\(=4a\sqrt{10}+\dfrac{1}{2}\cdot2a\sqrt{10}-3\cdot3a\sqrt{10}\)
\(=-4a\sqrt{10}\)
c: Ta có: \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}\)
\(=\left|x-1\right|-\left|x-2\right|\)
Lời giải:
ĐKXĐ: $x\geq 5$
$2x^2-8x-6=2\sqrt{x-5}\leq (x-5)+1$ theo BĐT Cô-si
$\Leftrightarrow 2x^2-9x-2\leq 0$
$\Leftrightarrow 2x(x-5)+(x-2)\leq 0$
Điều này vô lý do $2x(x-5)\geq 0; x-2\geq 3>0$ với mọi $x\geq 5$
Vậy pt vô nghiệm nên không có đáp án nào đúng.
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
a/ \(x\ge0\)
\(\sqrt{x}+\sqrt{x+7}+2x+7+2\sqrt{x^2+7x}-42=0\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+\left(\sqrt{x}+\sqrt{x+7}\right)^2-42=0\)
Đặt \(\sqrt{x}+\sqrt{x+7}=t>0\)
\(\Rightarrow t^2+t-42=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-7< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\sqrt{x+7}=6\Leftrightarrow2x+7+2\sqrt{x^2+7x}=36\)
\(\Leftrightarrow2\sqrt{x^2+7x}=29-2x\) \(\Leftrightarrow\left\{{}\begin{matrix}29-2x\ge0\\4\left(x^2+7x\right)=\left(29-2x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{29}{2}\\144x=841\end{matrix}\right.\) \(\Rightarrow x=\dfrac{841}{144}\)
b/ \(x^2< 2;x\ne0\)
Đặt \(\sqrt{2-x^2}=a>0\) ta được hệ:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{a}=2\\x^2+a^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+a=2ax\\\left(x+a\right)^2-2ax=2\end{matrix}\right.\) \(\Rightarrow4\left(ax\right)^2-2ax-2=0\)
\(\left[{}\begin{matrix}ax=1\\ax=\dfrac{-1}{2}\end{matrix}\right.\Rightarrow\) \(\left[{}\begin{matrix}x+a=2\\x+a=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+\sqrt{2-x^2}=2\left(1\right)\\x+\sqrt{2-x^2}=-1\left(2\right)\end{matrix}\right.\)
- Xét (1): \(1.x+1.\sqrt{2-x^2}\le\sqrt{\left(1^2+1^2\right)\left(x^2+2-x^2\right)}=2\)
Dấu "=" xảy ra khi \(x=\sqrt{2-x^2}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=1\end{matrix}\right.\) \(\Rightarrow x=1\)
- Xét (2): \(\sqrt{2-x^2}=-1-x\) \(\Leftrightarrow\left\{{}\begin{matrix}-1-x\ge0\\2-x^2=\left(-1-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le-1\\2x^2+2x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1-\sqrt{3}}{2}\\x=\dfrac{-1+\sqrt{3}}{2}>-1\left(l\right)\end{matrix}\right.\)
Vậy pt đã cho có 2 nghiệm: \(\left[{}\begin{matrix}x=1\\x=\dfrac{-1-\sqrt{3}}{2}\end{matrix}\right.\)
Bạn cần giúp nhanh nhưng lại không ghi đầy đủ đề bài?
Cho ∆ABC vuông tại A, kẻ đường cao AH. Tính diện tích ∆ABC biết AH = 12cm, BH = 9cm.