\(\dfrac{a-2}{8a^2-8a}\)+\(\dfrac{a+1}{6a^3-6a^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

a) \(N=8a^3-27b^3\)

\(=\left(2a\right)^3-\left(3b\right)^3\)

\(=\left(2a-3b\right)^3+18ab\left(2a-3b\right)\)

\(=5^3+18\cdot12\cdot5\)

\(=125+1080=1205\)

b) \(K=a^3+b^3+6a^2b^2\left(a+b\right)+3ab\left(a^2+b^2\right)\)

\(=a^3+b^3+6a^2b^2+3a^3b+3ab^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+2ab+b^2\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a+b\right)^2\)

\(=\left(a+b\right)^3+3ab\left(a+b\right)\left(a+b-1\right)\)

\(=1^3+3ab\cdot1\cdot0\)

\(=1\)

28 tháng 6 2018

a ) \(N=8a^3-27b^3\)

\(\Leftrightarrow N=\left(2a-3b\right)\left(4x^2+6ab+9b^2\right)\)

\(\Leftrightarrow N=5\left(4x^2+9b^2+72\right)\)

Ta có : \(2a-3b=5\)

\(\Leftrightarrow4a^2+9b^2=25+6ab\)

Thay vào ta được : \(N=5\left(25+6ab+72\right)=845\)

b ) \(K=a^3+b^3+6a^2b^2\left(a+b\right)+3ab\left(a^2+b^2\right)\)

\(\Leftrightarrow K=\left(a+b\right)^3-3ab\left(a+b\right)+6a^2b^2\left(a+b\right)+3ab\left(a+b\right)^2-6a^2b^2\)

\(\Leftrightarrow K=1-3ab+6a^2b^2+3ab-6a^2b^2=1\)

c ) \(P=\left(\dfrac{x}{4}\right)^3+\left(\dfrac{y}{2}\right)^3\)

\(\Leftrightarrow P=\left(\dfrac{x}{4}+\dfrac{y}{2}\right)^3-3\left[\left(\dfrac{x}{4}\right)^2\dfrac{y}{2}+\dfrac{x}{4}\left(\dfrac{y}{2}\right)^2\right]\)

\(\Leftrightarrow P=\left(\dfrac{2\left(x+2y\right)}{8}\right)^3-3\left[\dfrac{x^2y}{32}+\dfrac{xy^2}{16}\right]\)

\(\Leftrightarrow P=8-3xy\left(\dfrac{x+2y}{32}\right)\)

\(\Leftrightarrow P=8-3.4\left(\dfrac{8}{32}\right)=5\)

30 tháng 4 2017

a\(\in\)N\(\Rightarrow\)a+1\(\in\)N

4a2+8a+5=4(a+1)2+1 \(\in\)N nếu a\(\in\)N

6a2+12a+7=6(a+1)2+1 \(\in\)N nếu a\(\in\)N

Vậy \(\forall\)a\(\in\)N đều t/m

30 tháng 4 2017

tìm a để các số trên là số nguyên tố mà

22 tháng 4 2019

a2 + 8a + 5 thành 4a2 + 8a + 5 nha

trên mạng có đầy

1 tháng 8 2018

ta có : \(x+3+\dfrac{4-3a^2}{a^2-9}=\dfrac{5}{2a^2+6a}\)

\(\Leftrightarrow x+3=\dfrac{5}{2a^2+6a}-\dfrac{4-3a^2}{a^2-9}\)

\(\Leftrightarrow x+3=\dfrac{5}{2a\left(a+3\right)}-\dfrac{4-3a^2}{\left(a+3\right)\left(a-3\right)}\) \(\Leftrightarrow x+3=\dfrac{5\left(a-3\right)-2a\left(4-3a^2\right)}{2a\left(a+3\right)\left(a-3\right)}\) \(\Leftrightarrow x+3=\dfrac{5a-15-8a+6a^3}{2a\left(a+3\right)\left(a-3\right)}=\dfrac{6a^3-3a-15}{2a\left(a+3\right)\left(a-3\right)}\)

\(\Leftrightarrow x=\dfrac{6a^3-3a-15}{2a\left(a+3\right)\left(a-3\right)}-3=\dfrac{6a^3-3a-15-3.2a\left(a^2-9\right)}{2a\left(a+3\right)\left(a-3\right)}\)

\(\Leftrightarrow x=\dfrac{6a^3-3a-15-6a^3+54a}{2a\left(a+3\right)\left(a-3\right)}=\dfrac{51a-15}{2a\left(a^2-9\right)}\)

Bác làm nhanh ***** :((

24 tháng 8 2019

a) \(6x^4+7x^3-37x^2-8x+12\)

\(=\left(6a^4+6a^3-36a^2\right)+\left(a^3+a^2-6a\right)+\left(-2a^2-2a+12\right)\)

\(=6a^2\left(a^2+a-6\right)+a\left(a^2+a-6\right)-2\left(a^2+a-6\right)\)

\(=\left(a^2+a-6\right)\left(6a^2+a-2\right)\)

Em làm tiếp nhé

b) Hướng dẫn:

=\(\left(x^2+4x+8\right)^2-\left(2x\right)^2+\left(2x\right)^2+3x^3+14x^2+24x\)

\(=\left(x^2+2x+8\right)\left(x^2+6x+8\right)+\left(3x^3+18x^2+24x\right)\)

\(=\left(x^2+6x+8\right)\left(x^2+2x+8+3x\right)\)

Em làm nhé!

30 tháng 7 2018

e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)

= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)

= \(\dfrac{2x-6}{2x\left(x+3\right)}\)

= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)

30 tháng 7 2018

c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)

= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)

= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)

12 tháng 12 2017

a) \(\dfrac{x^3}{x+1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}+\dfrac{1}{1-x}\)

\(=\dfrac{x^3}{x+1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}+\dfrac{-1}{x-1}\)

\(=\dfrac{x^3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{-1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x^4-x+x^3+x+x-1-x+1}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x^4+x^3}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x^3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^3}{x-1}\)

b) \(\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)

\(=\dfrac{x^3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{x^2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{1\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x^3\left(x+1\right)-x^2\left(x-1\right)-1\left(x+1\right)+1\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^4+x^3-x^3+x^2-x-1+x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^4+x^2-2}{\left(x-1\right)\left(x+1\right)}\)

c) \(\dfrac{4-2x+x^2}{2+x}-2-x\)

\(=\dfrac{4-2x+x^2}{2+x}-\dfrac{2\left(2+x\right)}{2+x}-\dfrac{x\left(2+x\right)}{2+x}\)

\(=\dfrac{4-2x+x^2-4-2x-2x-x^2}{2+x}\)

\(=\dfrac{-6x}{2+x}\)

Còn lại thì dễ rồi, bạn tự làm nha ^^

28 tháng 6 2017

Phép nhân các phân thức đại số

27 tháng 3 2018

Bài 1:

a). Ta có: a < b

=> -6a > -6b

mà 3 > 1

=> \(3-6a>1-6b\)

b)

Ta có: a < b

=> a - 2 < b - 2

=> \(7\left(a-2\right)< 7\left(b-2\right)\)

c)

Ta có: a < b

=> -2a > -2b

=> 1 - 2a > 1 - 2b

\(\Rightarrow\dfrac{1-2a}{3}>\dfrac{1-2b}{3}\)

1 tháng 4 2018

Bài 2:

a) Ta có:

a+23<b+23

\(\Leftrightarrow a< b\)

b) Ta có:

\(-12a>-12b\)

\(\Leftrightarrow a< b\)

c) Ta có:

\(5a-6\ge5b-6\)

\(a\ge b\)

d) Ta có:

\(\dfrac{-2a+3}{5}\le\dfrac{-2b+3}{5}\)

\(\Leftrightarrow-2a+3\le-2b+3\)

\(\Leftrightarrow a\ge b\)