Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{99}{100}\)
\(=\dfrac{3}{2^2}\cdot\dfrac{2^3}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99}{10^2}\)
\(=\dfrac{11}{20}\)
bạn có thể giải thích rõ tại sao S=\(\dfrac{11}{20}\) đc ko
\(\dfrac{5}{12}+\dfrac{3}{16}=\dfrac{5\cdot4+3\cdot3}{48}=\dfrac{29}{48}\)
\(\dfrac{4}{15}-\dfrac{2}{9}=\dfrac{4\cdot3-2\cdot5}{45}=\dfrac{2}{45}\)
a) \(\dfrac{5}{12}+\dfrac{3}{16}=\dfrac{20}{48}+\dfrac{9}{48}=\dfrac{29}{48}\)
b) \(\dfrac{4}{15}-\dfrac{2}{9}=\dfrac{12}{45}-\dfrac{10}{45}=\dfrac{2}{45}\)
a. 7/9 - 16/9 = -9/9 = -1
b. 2/-15 + 7/10 = 17/30
c. (4 2/3 - 4 3/4) : -5/12 - 4/5
= (14/3 - 19/4) : (-5/12) - 4/5
= -1/12 : (-5/12) - 4/5
= 1/5 - 4/5
= -3/5
a: \(=\dfrac{14-2+9}{32}\cdot\dfrac{4}{5}=\dfrac{21}{5}\cdot\dfrac{1}{8}=\dfrac{21}{40}\)
b: \(=10+\dfrac{2}{9}+2+\dfrac{3}{5}+6+\dfrac{2}{9}=18+\dfrac{47}{45}=\dfrac{857}{45}\)
c: \(=\dfrac{3}{10}-\dfrac{12}{5}+\dfrac{1}{10}=\dfrac{4}{10}-\dfrac{12}{5}=\dfrac{2}{5}-\dfrac{12}{5}=-2\)
d: \(=\dfrac{-25}{30}\left(\dfrac{37}{44}+\dfrac{13}{44}-\dfrac{6}{44}\right)=\dfrac{-25}{30}\cdot1=-\dfrac{5}{6}\)
\(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}._{......}.\dfrac{80}{81}.\dfrac{99}{100}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.\dfrac{4.6}{5^2}...\dfrac{8.10}{9^2}.\dfrac{9.11}{10^2}\)
\(=\dfrac{1.2.3.4...8.9}{2.3.4.5...10}.\dfrac{3.4.5.6...11}{2.3.4.5...10}\)
\(=\dfrac{1}{10}.\dfrac{11}{2}\)
\(=\dfrac{11}{20}\)
Ta có:
\(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}....\dfrac{80}{81}.\dfrac{99}{100}\\ =\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.\dfrac{4.6}{5^2}...\dfrac{8.10}{9^2}.\dfrac{9.11}{10^2}\\ =\dfrac{11}{2.10}=\dfrac{11}{20}\)
a) Ta có: \(\dfrac{5}{8}+\dfrac{3}{17}+\dfrac{4}{18}+\dfrac{20}{-17}+\dfrac{-2}{9}+\dfrac{21}{56}\)
\(=\left(\dfrac{3}{17}-\dfrac{20}{17}\right)+\left(\dfrac{2}{9}-\dfrac{2}{9}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)\)
\(=-1+1=0\)
b) Ta có: \(\left(\dfrac{9}{16}+\dfrac{8}{-27}\right)+\left(1+\dfrac{7}{16}+\dfrac{-19}{27}\right)\)
\(=\left(\dfrac{9}{16}+\dfrac{7}{16}\right)+\left(\dfrac{-8}{27}-\dfrac{19}{27}\right)+1\)
=1-1+1=1
\(=\dfrac{2}{3}+\dfrac{1}{5}-\dfrac{2}{3}-4\)
\(=\dfrac{1}{5}-4=\dfrac{-19}{5}\)
c) \(\dfrac{11}{10}-\dfrac{-7}{24}=\dfrac{11}{10}+\dfrac{7}{24}=\dfrac{167}{120}\)
e) \(\dfrac{-8}{3}\cdot\dfrac{15}{7}=\dfrac{-120}{21}=\dfrac{-40}{7}\)
f) \(\dfrac{-2}{5}\cdot4\dfrac{1}{2}=\dfrac{-2}{5}\cdot\dfrac{9}{2}=-\dfrac{9}{5}\)
g) \(\dfrac{5}{3}:\dfrac{5}{-3}=\dfrac{5}{3}:\dfrac{-5}{3}=\dfrac{5}{3}\cdot\dfrac{-3}{5}=-1\)
h) \(\dfrac{5}{4}:\left(-9\right)=\dfrac{5}{4}:\dfrac{-9}{1}=\dfrac{5}{4}\cdot\dfrac{-1}{9}=-\dfrac{5}{36}\)
\(\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}\cdot...\cdot\dfrac{100}{99}\)
\(=\dfrac{2\cdot2}{1\cdot3}\cdot\dfrac{3\cdot3}{2\cdot4}\cdot...\cdot\dfrac{10\cdot10}{9\cdot11}\)
\(=\dfrac{2\cdot3\cdot...\cdot10}{1\cdot2\cdot...\cdot9}\cdot\dfrac{2\cdot3\cdot...\cdot10}{3\cdot4\cdot...\cdot11}\)
\(=\dfrac{10}{1}\cdot\dfrac{2}{11}=\dfrac{20}{11}\)