\(\dfrac{3x+1}{x+2}\)≤ 1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2022

\(\dfrac{3x+1}{x+2}\le1\)

\(\Leftrightarrow\dfrac{3x+1}{x+2}-1\le0\)

\(\Leftrightarrow\dfrac{3x+1-x-2}{x+2}\le0\)

\(\Leftrightarrow\dfrac{2x-1}{x+2}\le0\)

Đặt \(n\left(x\right)=\dfrac{2x-1}{x+2}\)

Ta có bảng xét dấu:

loading...

Với: \(x=\dfrac{1}{2}\Rightarrow f\left(x\right)=0\)

        \(-2< x< \dfrac{1}{2}\Rightarrow f\left(x\right)< 0\)

\(\Rightarrow\dfrac{3x+1}{x+2}\le1\)

\(\Leftrightarrow-2< x\le\dfrac{1}{2}\)

18 tháng 4 2017

1.

\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\left(ĐKXĐ:x\ne1\right)\\ \Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\\ \Leftrightarrow21x-9=2x-2\\ \Leftrightarrow19x=7\\ \Leftrightarrow x=\dfrac{7}{19}\left(TMĐK\right)\)

2.

\(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\left(ĐKXĐ:x\ne-\dfrac{2}{3};x\ne\dfrac{1}{3}\right)\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\\ \Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\\ \Leftrightarrow-8x+1=-11x-14\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\left(TMĐK\right)\)

3.

\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\\ \Leftrightarrow\left(\dfrac{1-x}{x+1}+3\right)\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{1-x+3\left(x+1\right)}{x+1}.\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{4+2x}{x+1}\left(x+1\right)=2x+3\\ \Leftrightarrow4+2x=2x+3\\ \Leftrightarrow4=3\)

Vô nghiệm.

26 tháng 8 2018

a) \(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\)

\(=\dfrac{5x-1-5x+7}{3x+2-3x+1}\)

\(=\dfrac{-1+7}{2+1}\)

\(=\dfrac{6}{3}\)

\(=2\)

Với \(\dfrac{5x-1}{3x+2}=2\)

\(\Rightarrow5x-1=2\left(3x+2\right)\)

\(\Rightarrow5x-1-2\left(3x+2\right)=0\)

\(\Rightarrow5x-1-6x-4=0\)

\(\Rightarrow-x-5=0\)

\(\Rightarrow x=-5\)

1 tháng 5 2017

ai giải giúp mk vs đg cần gấp

12 tháng 5 2017

1) \(2\left(3x-1\right)-3x=10\)

<=> \(6x-2-3x=10\)

<=>\(3x-2=10\)

<=> \(3x=12\)

<=> \(x=4\)

Vậy tập nghiệm của pt S={4}

2) \(\dfrac{x+1}{x}+1=\dfrac{3x-1}{x+1}+\dfrac{1}{x\left(x+1\right)}\)

ĐKXĐ: x khác 0; x khác 1,-1

<=> \(\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}+\dfrac{x\left(x+1\right)}{x\left(x+1\right)}\)= \(\dfrac{3x^2-x}{x\left(x+1\right)}+\dfrac{1}{x\left(x+1\right)}\)

=> \(\left(x+1\right)^2+x\left(x+1\right)\)= \(3x^2-x+1\)

<=> \(x^2+2x+1+x^2+x=3x^2-x+1\)

<=> \(x^2+x^2+2x+x-3x^2+x\)= \(1-1\)

<=> \(-x^2+4x=0\)

<=>\(4x=x^2\)

<=> \(4=x\) ( TMĐKXĐ)

Vậy tập nghiệm của pt S={4}

c) \(\dfrac{2x+1}{3}-\dfrac{3x-2}{2}>\dfrac{1}{6}\)

<=> \(\dfrac{4x+2}{6}-\dfrac{9x-6}{6}>\dfrac{1}{6}\)

<=> \(\dfrac{4x+2-9x+6}{6}-\dfrac{1}{6}>0\)

<=> \(\dfrac{-5x+7}{6}>0\)

Mà 6>0 . Nên \(-5x+7>0\)

Ta có \(-5x+7>0\)

<=> \(-5x>-7\)

<=> \(x< \dfrac{7}{5}\)

Vậy tập nghiệm của bất phương trình S={x thuộc R| \(x< \dfrac{7}{5}\)}

12 tháng 5 2017

1)2.(3x-1)-3x=10

6x-2-3x =10

6x-3x =10+2

3x =12

x =4

Vậy S=4

2) \(\dfrac{x+1}{x}+1=\dfrac{3x-1}{x+1}+\dfrac{1}{x\left(x+1\right)}\)

Đkxđ: \(x\ne0\)\(x\ne-1\)

MTC;x(x+1)

\(\dfrac{x+1}{x}+1=\dfrac{3x-1}{x+1}+\dfrac{1}{x\left(x+1\right)}\)

\(\Leftrightarrow\)\(\dfrac{\left(x+1\right)\left(x+1\right)+x\left(x+1\right)}{x\left(x+1\right)}=\dfrac{x\left(3x-1\right)+1}{x\left(x+1\right)}\)

\(\Leftrightarrow\)(x+1) (x+1)+x(x+1) = x (3x-1)+1

\(\Leftrightarrow\)x2+x+x+1+x2+x =3x2-x+1

\(\Leftrightarrow\)x2+x+x+1+x2+x-3x2+x-1=0

\(\Leftrightarrow\)-x24x=0

\(\Leftrightarrow\)4x-x2=0

\(\Leftrightarrow\)x(4-x)=0

\(\Leftrightarrow\)x=0 hoặc 4-x=0

\(\Leftrightarrow\)x=0 hoặc x =4

3)\(\dfrac{2x+1}{3}-\dfrac{3x-2}{2}>\dfrac{1}{6}\)

\(\Leftrightarrow\)\(\dfrac{2x+1}{3}6-\dfrac{3x-2}{2}6>\dfrac{1}{6}\)6

\(\Leftrightarrow\)2(2x+1)-3(3x-2)>1

\(\Leftrightarrow\)4x+2-9x+6>1

\(\Leftrightarrow\)4x-9x>1-2-6

\(\Leftrightarrow\)-5x>-7

\(\Leftrightarrow\)-5x.\(\dfrac{1}{-5}>-7.\dfrac{1}{-5}\)

\(\Leftrightarrow x>\dfrac{7}{5}\)

14 tháng 12 2018

a) \(\dfrac{2}{3x+9}-\dfrac{x-3}{3x^2+9x}\)

\(=\dfrac{2}{3\left(x+3\right)}-\dfrac{x-3}{3x\left(x+3\right)}\)

\(=\dfrac{2x}{3x\left(x+3\right)}-\dfrac{x-3}{3x\left(x+3\right)}\)

\(=\dfrac{2x-x+3}{3x\left(x+3\right)}\)

\(=\dfrac{x+3}{3x\left(x+3\right)}\)

\(=\dfrac{1}{3x}\)

b) \(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x^2-2x+1\right)}:\dfrac{3\left(x+1\right)}{5\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x-1\right)^2}:\dfrac{3\left(x+1\right)}{5\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x-1\right)^2}.\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\)

\(=\dfrac{x}{\left(x-1\right).3}\)

\(=\dfrac{x}{3x-3}\)

c) \(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+99}-\dfrac{1}{x+100}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+100}\)

\(=\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)

\(=\dfrac{x+100-x}{x\left(x+100\right)}\)

\(=\dfrac{100}{x\left(x+100\right)}\)

14 tháng 12 2018

a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

14 tháng 12 2018

thanks

18 tháng 4 2017

a) ĐKXĐ: \(x\ne-1,x\ne0\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

<=> \(\dfrac{x\left(x+3\right)+\left(x-2\right)\left(x+1\right)-2x\left(x+1\right)}{x\left(x+1\right)}=0\)

<=> \(\dfrac{x^2+3x+x^2-x-2-2x^2-2x}{x\left(x+1\right)}=0\)

<=> \(\dfrac{-2}{x\left(x+1\right)}=0\) (vô lí)

=> pt vô nghiệm

b) ĐKXĐ: \(x\ne3,x\ne-2\)

ta có:\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\)

<=> \(\dfrac{\left(x+2\right)\left(3-x\right)+x\left(x+2\right)-5x-2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=0\)

<=> \(\dfrac{x-x^2+6+x^2+2x-5x-6+2x}{\left(x+2\right)\left(3-x\right)}=0\)

<=> \(\dfrac{0}{\left(x+2\right)\left(3-x\right)}=0\) (luôn đúng)

Vậy pt trên luôn đúng với mọi x khác 3 và -2

18 tháng 4 2017

a) \(\dfrac{x+3}{x+1}\)+\(\dfrac{x-2}{x}\)=2

(đk: x\(\ne\); x\(\ne\)-1)

<=> \(x^2\)+3x + \(x^2\)-x -2 =\(2x^2\)+2x

<=> 2x -2 =2x

<=>0x=2

=>Pt vô nghiệm.

b) 1+ \(\dfrac{x}{3-x}\)= \(\dfrac{5x}{\left(x+2\right)\left(3-x\right)}\)+\(\dfrac{2}{x+2}\)

(đk:x\(\ne\)3; x\(\ne\)-2)

<=> 3x +6=3x+6

<=>0x=0

=> Pt vô số no.

c)\(\dfrac{3x+2}{3x-2}\)-\(\dfrac{6}{2+3x}\)=\(\dfrac{9x^2}{9x^2-4}\)

(đk: x\(\ne\)\(\pm\)\(\dfrac{2}{3}\))

<=>\((3x+2)^2\)-6(3x-2)=\(9x^2\)

<=>\(9x^2 \)+12x +4 -18x+12=\(9x^2\)

<=>16-6x=0

<=>6x=16

<=> x=\(\dfrac{8}{3}\)(t/m)

Vậy pt có no duy nhất là x=\(\dfrac{8}{3}\)

20 tháng 12 2018

a.

\(\dfrac{x+3}{x-2}+\dfrac{4+x}{2-x}\\ =\dfrac{x+3}{x-2}-\dfrac{4+x}{x-2}\\ =\dfrac{x+3-4-x}{x-2}\\ =-\dfrac{1}{x-2}\)

b. \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)

\(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)

\(=\dfrac{x^2+x}{2x\left(x+3\right)}+\dfrac{4x+6}{2x\left(x+3\right)}=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}\)

\(=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x^2+3x+2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{x\left(x+3\right)+2\left(x+3\right)}{2x\left(x+3\right)}=\dfrac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{x+2}{2x}\)

c. \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)

\(=\dfrac{3x}{2x\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)

\(=\dfrac{3x-x+6}{2x\left(x+3\right)}=\dfrac{2x+6}{2x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{1}{x}\)

d. \(\dfrac{2x+6}{3x^2-x}:\dfrac{x^2+3x}{1-3x}\)

\(=\dfrac{2\left(x+3\right)}{x\left(3x-1\right)}:\dfrac{-x\left(x+3\right)}{3x-1}\)

\(=\dfrac{2\left(x+3\right)}{x\left(3x-1\right)}.\dfrac{-\left(3x-1\right)}{x\left(x+3\right)}\)

\(=-\dfrac{2}{x^2}\)

20 tháng 12 2018

bị mỏi tay nhỉ

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)