Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ( x - 3 ) . ( x - 4 ) = 0
=> x - 3 = 0 hoặc x - 4 = 0
Nếu x - 3 = 0 => x = 3
Nếu x - 4 = 0 => x = 4
b, (\(\frac{1}{2}\)x - 4 ) . ( x - \(\frac{1}{4}\)) = 0
=>( \(\frac{1}{2}\)x - 4 ) = 0 Hoặc ( x - \(\frac{1}{4}\)) = 0
Nếu ( \(\frac{1}{2}\)x - 4 ) = 0 => x = \(\frac{8}{1}\)
Nếu ( x - \(\frac{1}{4}\)) = 0 => x = \(\frac{1}{4}\)
c, (\(\frac{1}{3}\)- x ) . ( \(\frac{1}{2}\)+ 1 : x ) = 0
=> ( \(\frac{1}{3}\)- x ) = 0 Hoặc ( \(\frac{1}{2}\)+ 1 : x ) = 0
Nếu (\(\frac{1}{3}\)- x ) = 0 => x = \(\frac{1}{3}\)
Nếu ( \(\frac{1}{2}\)+ 1 : x ) = 0 => x = \(\frac{-2}{1}\)
d, ( x + 3 ) . ( x - 4 ) + 2.(x + 3 ) = 0
=> (X + 3 ) = 0 Hoặc ( x - 4 ) = 0 Hoặc 2. ( x + 3 ) = 0
Nếu x + 3 = 0 => x = 0
Nếu ( x - 4 ) = 0 => x = 4
Nếu 2.(x + 3) = 0 => x = 3
# Cụ MAIZ
a. ( x - 3 ) ( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
b. \(\left(\frac{1}{2}x-4\right)\left(x-\frac{1}{4}\right)=0\)
<=> \(\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)
Bài làm :
\(a\text{)}...\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
\(b\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=4\\x=0+\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)
\(c\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}-x=0\\\frac{1}{2}+1\div x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-0\\1\div x=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)
\(d\text{)}...\Leftrightarrow\left(x+3\right)\left(x-4+2\right)=0\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Bài làm :
\(a,\left(x-3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
\(b,\left(\frac{1}{2}x-4\right)\left(x-\frac{1}{4}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{2}x=4\\x=\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)
\(c,\left(\frac{1}{3}-x\right).\left(\frac{1}{2}+1:x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{3}-x=0\\\frac{1}{2}+1:x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)
\(d,\left(x+3\right)\left(x-4\right)+2\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-4+2\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Học tốt nhé
Bài làm :
\(a\text{)}...\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
\(b\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=4\\x=0+\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)
\(c\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}-x=0\\\frac{1}{2}+1\div x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-0\\1\div x=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)
\(d\text{)}...\Leftrightarrow\left(x+3\right)\left(x-4+2\right)=0\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Lời giải :
Theo đề bài ta có \(\frac{x}{\frac{5}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\Leftrightarrow\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}\)
Đặt \(\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5k}{2}\\z=\frac{6k}{5}\end{cases}}\)
Mặt khác : \(\frac{x}{2}=\frac{z-28}{3}\)
\(\Leftrightarrow3x-2z=-56\)
\(\Leftrightarrow3\cdot\frac{5k}{2}-2\cdot\frac{6k}{5}=-56\)
\(\Leftrightarrow k=\frac{-560}{51}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1400}{51}\\y=\frac{-2240}{153}\\z=\frac{-224}{17}\end{cases}}\)
\(B=x+y-z=\frac{-1400}{51}+\frac{-2240}{153}-\frac{-224}{17}=\frac{-4424}{153}\)
a)
- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3
=> A lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0
=> x + 3 = 0
x = -3
Vậy..........
b)
Ta có: B lớn hơn hoặc = / x - 1 / + / x - 3 / = / x - 1 / + / 3 - x /
Mà / x - 1 / + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x / = /2/ = 2
=> B lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0. (1)
Giải (1) được x = 2 TM.
Vậy min B = 2 <=> x=2.
a) \(\left|\sqrt{2}-x\right|=\sqrt{2}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{2}-x=\sqrt{2}\\\sqrt{2}-x=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\sqrt{2}\end{cases}}}\)
b) \(\left|x+1\right|=\sqrt{3}+2\)
\(\Rightarrow\orbr{\begin{cases}x+1=\sqrt{3}+2\\x+1=-\sqrt{3}-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+1\\x=-\sqrt{3}-3\end{cases}}\)
P/s: Công vào 6 phân thức trên, mỗi phân thức công thêm 1 rồi quy đồng lên ta được:
\(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
Ta xét: \(\hept{\begin{cases}\frac{1}{2009}< \frac{1}{2000}\\\frac{1}{2008}< \frac{1}{1999}\\\frac{1}{2007}< \frac{1}{1998}\end{cases}}\Rightarrow\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)
=> \(x+2010=0\Rightarrow x=-2010\)
Vậy x = -2010
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Leftrightarrow\left(1+\frac{x+1}{2009}\right)+\left(1+\frac{x+2}{2008}\right)+\left(1+\frac{x+3}{2007}\right)\)
\(=\left(1+\frac{x+10}{2000}\right)+\left(1+\frac{x+11}{1999}\right)+\left(1+\frac{x+12}{1998}\right)\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
\(\Leftrightarrow x+2010=0\)
\(\Leftrightarrow x=-2010\)
\(\dfrac{3}{x-2}=\dfrac{-2}{x-4}\left(dk:x\ne2;x\ne4\right)\)
\(\Rightarrow3\cdot\left(x-4\right)=-2\cdot\left(x-2\right)\)
\(\Rightarrow3x-12=-2x+4\)
\(\Rightarrow3x+2x=4+12\)
\(\Rightarrow5x=16\)
\(\Rightarrow x=\dfrac{16}{5}\left(tm\right)\)
\(ĐK:x\ne2;x\ne4\\ Có:\dfrac{3}{x-2}=\dfrac{-2}{x-4}\\ \Leftrightarrow3\left(x-4\right)=-2\left(x-2\right)\\ \Leftrightarrow3x-12=-2x+4\\ \Leftrightarrow3x+2x=4+12\\ \Leftrightarrow5x=16\\ \Leftrightarrow x=\dfrac{16}{5}\left(TM\right)\\ Vậy:x=\dfrac{16}{5}\)