\(\dfrac{3b-28}{3a-5}-\dfrac{38-3a}{5-3b}\) với \(a-b=11\) và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2023

\(đk:a;b\ne\dfrac{5}{3}\)

\(\dfrac{3b-28}{3a-5}-\dfrac{38-3a}{5-3b}=\dfrac{3b-28}{3\left(11+b\right)-5}-\dfrac{38-3\left(11+b\right)}{5-3b}=1-1=0\)

4 tháng 2 2023

làm như nào để ra 11 + b ạ?

30 tháng 8 2017

a, Theo bài ta có :

\(\dfrac{a}{b}=\dfrac{10}{3}\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{3}\)

Đặt :

\(\dfrac{a}{10}=\dfrac{b}{3}=k\left(k\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=10k\\b=3k\end{matrix}\right.\)

Ta có :

\(Q=\dfrac{3a-2b}{a-3b}=\dfrac{3.10k-2.3k}{10k-3.3k}=\dfrac{30k-6k}{10k-9k}=\dfrac{24k}{1k}=24\)

Vậy ...........

30 tháng 8 2017

a-b=3=>a=b+3 Thay a=b+3 vào B

\(\Rightarrow B=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\)

\(\Rightarrow B=1-\dfrac{4b-b+12}{3b+9+3}=1-1=0\)

19 tháng 10 2017

Lời giải:

a)\(\dfrac{a}{b}=\dfrac{3}{4}\Leftrightarrow4a=3b\)

\(4a.5=3b.5\Leftrightarrow20a=15b\Leftrightarrow\dfrac{20a}{3}=5b\)

Khi đó:

\(A=\dfrac{2a-5b}{a-3b}=\dfrac{2a-\dfrac{20}{3}a}{a-4a}=\dfrac{-\dfrac{14}{3}a}{-3a}=\dfrac{-14}{\dfrac{3}{-3}}=14\)

b) Ta có:

\(a-b=7\Leftrightarrow b=a-7\)

\(B=\dfrac{3a-b}{2a+7}+\dfrac{3b-a}{2b-7}=\dfrac{3a-\left(a-7\right)}{2a+7}+\dfrac{3\left(a-7\right)-a}{2\left(a-7\right)-7}\)

\(B=\dfrac{3a-a+7}{2a+7}+\dfrac{3a-21-a}{2a-14-7}\)

\(B=\dfrac{2a+7}{2a+7}+\dfrac{2a-21}{2a-21}=1+1=2\)

12 tháng 5 2017

BT1 : Tính giá trị của biểu thức ;

Thay 7 = a -b vào biểu thức B ,có :

\(\dfrac{3a-b}{2a+\left(a-b\right)}+\dfrac{3b-a}{2b-\left(a-b\right)}\)

\(=\dfrac{3a-b}{3a-b}+\dfrac{3b-a}{3a-a}\)

\(=1+1\)

= 2

Vậy giá trị của biểu thức B là 2 với a- b=7

a: Ta có: 5a+3b=-5/6

nên \(6\left(5a+3b\right)=-5\)

=>30a+18b=-5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{7}=\dfrac{b}{3}=\dfrac{30a+18b}{30\cdot7+18\cdot3}=\dfrac{-5}{264}\)

Do đó: a=-35/264; b=-5/88

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{11}=\dfrac{b}{3}=\dfrac{6a-b}{6\cdot11-3}=\dfrac{-3}{63}=\dfrac{-1}{21}\)

Do đó: a=-11/21; b=-1/7

5 tháng 6 2015

a = b + 11. Thay vào A ta được

\(A=\frac{3b+28}{3\left(b+11\right)-5}-\frac{38-3\left(b+11\right)}{5-3b}=\frac{3b+28}{3b+33-5}-\frac{38-3b-33}{5-3b}\)

\(=\frac{3b+28}{3b+28}-\frac{5-3b}{5-3b}=1-1=0\)

21 tháng 2 2022

a = b + 11. Thay vào A ta được

A=3b+283(b+11)5383(b+11)53b=3b+283b+335383b3353bA=3b+283(b+11)−5−38−3(b+11)5−3b=3b+283b+33−5−38−3b−335−3b

=3b+283b+2853b53b=11=0

10 tháng 8 2017

ta có : \(a-b=15\Leftrightarrow a=15+b\)

thay vào \(P\) ta có \(P=\dfrac{3\left(15+b\right)-b}{2\left(15+b\right)+15}+\dfrac{3b-\left(15+b\right)}{2b-15}\)

\(P=\dfrac{45+3b-b}{30+2b+15}+\dfrac{3b-15-b}{2b-15}=\dfrac{2b+45}{2b+45}+\dfrac{2b-15}{2b-15}\)

\(P=1+1=2\) vậy \(P=2\) với \(a-b=15\)

10 tháng 8 2017

Thay a-b=15 vào P có:

\(P=\dfrac{3a-b}{2a+\left(a-b\right)}+\dfrac{3b-a}{2b-\left(a-b\right)}\)

\(=\dfrac{3a-b}{3a-b}+\dfrac{3b-a}{3b-a}\)

=1+1=2

Vậy P=2 TM đk a-b=15;\(a\ne-7,5;b\ne7,5\)

8 tháng 3 2017

Theo đề bài, ta có: \(\dfrac{a}{b}=\dfrac{10}{3}\Rightarrow\dfrac{a}{10}=\dfrac{b}{3}\)

Đặt \(\dfrac{a}{10}=\dfrac{b}{3}=k\) \(\left(k\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a=10k\\b=3k\end{matrix}\right.\)

Ta có: \(Q=\dfrac{3a-2b}{a-3b}=\dfrac{3\times10k-2\times3k}{10k-3\times3k}=\dfrac{30k-6k}{10k-9k}=\dfrac{24k}{1k}=24\)

Vậy \(Q=24\).

8 tháng 3 2017

\(Q=\dfrac{3a-2b}{a-3b}=\dfrac{3.\dfrac{a}{b}-2}{\dfrac{a}{b}-3}=\dfrac{3.\dfrac{10}{3}-2}{\dfrac{10}{3}-3}=\dfrac{8.3}{10-9}=24\)

14 tháng 4 2017

\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

\(\Rightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(\Rightarrow ab+5b-6a-30=ab-5b+6a-30\)

\(\Rightarrow5b-6a=-5b+6a\)

\(\Rightarrow10b=12a\)

\(\Rightarrow5b=6a\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{5}{6}\left(đpcm\right)\)

Vậy \(\dfrac{a}{b}=\dfrac{5}{6}\)

14 tháng 4 2017

\(\dfrac{a+5}{a-5}=\dfrac{a+6}{a-6}\)suy ra \(\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(a+6\right)\)

suy ra: \(6a=5b\)

suy ra: \(\dfrac{a}{b}=\dfrac{5}{6}\)