\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\) va a + b + c = -50

Tim a,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

https://loigiaihay.com/nguoi-chan-cuu-va-su-tu-c121a19561.html

26 tháng 12 2018

\(\dfrac{3a-2b}{5}\)=\(\dfrac{2c-5a}{3}\)=\(\dfrac{5b-3c}{2}\)=\(\dfrac{15a-10b}{5}\)=\(\dfrac{6c-15a}{9}\)=\(\dfrac{10b-6c}{2}\)

Suy ra: \(\dfrac{15a-10b+6c-15a+10b-6c}{25+9+4}\)=\(\dfrac{0}{38}\)=0

Suy ra: 3a=2b\(\Leftrightarrow\)\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)(1)

2c=5a\(\Leftrightarrow\)\(\dfrac{c}{5}\)=\(\dfrac{a}{2}\)(2)

Từ (1) và (2) suy ra: \(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{5}\)

Theo tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{5}\)=\(\dfrac{a+b+c}{2+3+5}\)=\(\dfrac{-50}{10}\)=-5

Tự làm nốt nha.

Đúng thì tick cho mk nha

26 tháng 11 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}=\dfrac{5.\left(3a-2b\right)+3.\left(2c-5a\right)}{5.5+3.3}=\dfrac{-10b+6c}{34}=\)

\(=\dfrac{-5b+3c}{17}\)

Do đó: \(\dfrac{5b-3c}{14}=\dfrac{-5b+3c}{2}\)

Suy ra: \(5b-3c=0\Rightarrow b=\dfrac{3}{5}c\)\(a=\dfrac{2}{5}c\)

Lại có: \(a+b+c=-50\Rightarrow\dfrac{2}{5}c+\dfrac{3}{5}c+c=-50\Rightarrow c=-25\)

\(\Rightarrow b=\dfrac{3}{5}.\left(-25\right)=-15\)

\(a=\dfrac{2}{5}.\left(-25\right)=-10\)

Vậy \(\left\{{}\begin{matrix}a=-10\\b=-15\\c=-25\end{matrix}\right.\)

Chúc bạn học tốt!!!

26 tháng 11 2017

Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}=\dfrac{5\left(3a-2b\right)\left(2c-5a\right)}{5.5+3.3}=\dfrac{-10b+6c}{34}=\dfrac{-5b+3c}{17}\)

\(\Leftrightarrow\dfrac{5b-3c}{2}=\dfrac{-5b+3c}{17}\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{3c}{5}\\a=\dfrac{2c}{5}\end{matrix}\right.\)

\(a+b+c=-50\)

\(\Leftrightarrow\dfrac{2c}{5}+\dfrac{3c}{5}+c=-50\)

\(\Leftrightarrow2c=-50\)

\(\Leftrightarrow c=-25\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-15\\a=-10\end{matrix}\right.\)

Vậy ..

11 tháng 2 2018

\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\)

\(\Rightarrow\dfrac{5\left(3a-2b\right)}{25}=\dfrac{3\left(2c-5a\right)}{9}=\dfrac{2\left(5b-3c\right)}{4}\)

\(\Rightarrow\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{10b-6c}{4}\)

Áp dụng tính chất của dãy tỉ số = nhau, ta có:

\(\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{10b-6c}{4}=\dfrac{15a-10b+6c-15a+10b-6c}{25+9+4}=\dfrac{0}{38}=0\)

\(\Rightarrow\dfrac{3a-2b}{5}=0\Rightarrow3a-2b=0\Rightarrow3a=2b\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\)(1)

\(\Rightarrow\dfrac{2c-5a}{3}=0\Rightarrow2c-5a=0\Rightarrow2c=5a\Rightarrow\dfrac{a}{2}=\dfrac{c}{5}\)(2)

Từ (1) và (2) ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\)

Theo tính chất dãy tỉ số = nhau, ta lại có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{-50}{10}=-5\)

=> a = -10

b = -15

c = -25

AH
Akai Haruma
Giáo viên
10 tháng 4 2020

Lời giải:

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\Leftrightarrow \frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)

Áp dụng TC dãy tỉ số bằng nhau:

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=0\)

\(\Rightarrow 15a=10b=6c\)

\(\Leftrightarrow \frac{a}{6}=\frac{b}{9}=\frac{c}{15}\)

Tiếp tục áp dụng TCDTSBN:

$\frac{a}{6}=\frac{b}{9}=\frac{c}{15}=\frac{a+b+c}{6+9+15}=\frac{50}{30}=\frac{5}{3}$

$\Rightarrow a=10; b=15; c=25$

15 tháng 8 2018

bạn tham khảo tại: câu hỏi của nguyễn thị thanh mai- onlinemath

23 tháng 1 2018

Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-5c}{2}=\dfrac{5\left(3a-2b\right)\left(2c-5a\right)}{5.5+3.3+}=\dfrac{-10b+6c}{34}=\dfrac{-5b+3c}{17}\)

\(\Leftrightarrow\dfrac{5b-3c}{2}=\dfrac{-5b+3c}{17}\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{3c}{5}\\a=\dfrac{2c}{5}\end{matrix}\right.\)

\(a+b+c=-50\)

\(\Leftrightarrow\dfrac{2c}{5}+\dfrac{3c}{5}+c=-50\)

\(\Leftrightarrow2c=-50\)

\(\Leftrightarrow c=-25\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=-15\end{matrix}\right.\)

Vậy ...

23 tháng 1 2018

\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\leftrightarrow\dfrac{5\left(3a-2b\right)}{25}=\dfrac{3\left(2c-5a\right)}{9}=\dfrac{2\left(5b-3c\right)}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{5\left(3a-2b\right)}{25}=\dfrac{3\left(2c-5a\right)}{9}=\dfrac{2\left(5b-3c\right)}{4}=\dfrac{5\left(3a-2b\right)+3\left(2c-5a\right)+2\left(5b-3c\right)}{25+9+4}=0\)\(\Rightarrow\left\{{}\begin{matrix}3a-2b=0\\2c-5a=0\\5b-3c=0\end{matrix}\right.\)
⇔ 15a= 10b = 6c ⇔ \(\dfrac{a}{\dfrac{1}{15}}=\dfrac{b}{\dfrac{1}{10}}=\dfrac{c}{\dfrac{1}{6}}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{\dfrac{1}{15}}=\dfrac{b}{\dfrac{1}{10}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{a+b+c}{\dfrac{1}{15}+\dfrac{1}{10}+\dfrac{1}{6}}=-\dfrac{50}{\dfrac{1}{3}}=-150\)
\(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=-15\\c=-25\end{matrix}\right.\)

10 tháng 3 2017

Bài 1: Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}=\frac{5\left(3a-2b\right)+3\left(2c-5a\right)}{5.5+3.3}=\frac{-10b+6c}{34}=\frac{-5b+3c}{17}\)

Do đó: \(\frac{5b-3c}{2}=\frac{-5b+3c}{17}\)

\(\Rightarrow\left\{\begin{matrix}b=\frac{3}{5}c\\a=\frac{2}{5}c\end{matrix}\right.\)

\(a+b+c=-50\)

\(\Rightarrow\frac{2}{3}c+\frac{3}{5}c+c=-50\)

\(\Rightarrow\left(\frac{2}{5}+\frac{3}{5}\right)c+c=-50\)

\(\Rightarrow c+c=-50\)

\(\Leftrightarrow c=-25\)

\(\Rightarrow\left\{\begin{matrix}b=\frac{3}{5}c=\frac{3}{5}.\left(-25\right)=-15\\a=\frac{2}{5}c=\frac{2}{5}.\left(-25\right)=-10\end{matrix}\right.\)

Vậy: \(\left\{\begin{matrix}a=-10\\b=-15\\c=-25\end{matrix}\right.\)

10 tháng 3 2017

Lấy trong sách nâng cao phát triển hay trong quyển chuyên đề có dạng tương tự ( câu a)

Mà câu b dễ mà

5 tháng 4 2018

TA CÓ:

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}=\frac{15a-10b}{25}\)\(=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)\(=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)

\(\Rightarrow3a-2b=0\Rightarrow3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\)   \(\left(1\right)\)

\(\Rightarrow2c-5a=0\Rightarrow2c=5a\Rightarrow\frac{c}{5}=\frac{a}{2}\)    \(\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Áp dụng t/c của dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{50}{10}=5\)

\(\frac{a}{2}=5\Rightarrow a=10\)

\(\frac{b}{3}=5\Rightarrow b=15\)

\(\frac{c}{5}=5\Rightarrow c=25\)

Vậy a=10, b=15, c=25

NV
3 tháng 12 2018

1/ Nhìn tỉ lệ tử-mẫu mà nhân thêm cho phù hợp rồi áp dụng dãy tỉ số là OK thôi

\(\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{10b-6c}{4}=\dfrac{15a-10b+6c-15a+10b-6c}{25+9+4}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3a-2b=0\\2c-5a=0\\5b-3c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\\\dfrac{a}{2}=\dfrac{c}{5}\\\dfrac{b}{3}=\dfrac{c}{5}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{-50}{10}=-5\)

\(\Rightarrow\left\{{}\begin{matrix}a=-5.2=-10\\b=-5.3=-15\\c=-5.5=-25\end{matrix}\right.\)

2/Dễ dàng nhận ra \(b>c\)

\(a^3+3a^2=5^b-5\Leftrightarrow a^2\left(a+3\right)=5^b-5\Leftrightarrow a^2.5^c=5^b-5\)

\(\Rightarrow a^2=\dfrac{5^b-5}{5^c}=5^{b-c}-5^{1-c}\)

Do \(b>c\Rightarrow5^{b-c}\) nguyên, mà \(a^2\) nguyên \(\Rightarrow5^{1-c}\) nguyên \(\Rightarrow c=1\)

\(\Rightarrow a+3=5^1\Rightarrow a=2\)

\(\Rightarrow5^b=2^3+3.2^2+5=25\Rightarrow b=2\)

Vậy \(a=2;b=2;c=1\)

3 tháng 12 2018

@T-râm huyền thoại