\(\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+...+\dfrac{14}{92.106}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

\(=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{106}\)

\(=\dfrac{1}{4}-\dfrac{1}{106}=\dfrac{51}{212}\)

30 tháng 3 2017

\(\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+...+\dfrac{14}{92.106}\)
= \(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{92}-\dfrac{1}{106}\)
= \(\dfrac{1}{4}-\dfrac{1}{106}\)
= \(\dfrac{51}{212}\)

3 tháng 8 2017

Đặt \(A=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}\)

\(1A=1-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{11}+\dfrac{1}{11}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}\right)-\dfrac{1}{22}\)\(1A=1-\dfrac{1}{22}\)

\(1A=\dfrac{22}{22}-\dfrac{1}{22}\)

\(1A=\dfrac{21}{22}\)

\(\dfrac{21}{22}\) không thể rút gọn

3 tháng 8 2017

\(A=\dfrac{1}{1\cdot2}+\dfrac{2}{2\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{6}{16\cdot22}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}\\ =1-\dfrac{1}{22}\\ =\dfrac{21}{22}\)

Vậy \(A=\dfrac{21}{22}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}+\dfrac{1}{22}-\dfrac{1}{29}\)

=1-1/29

=28/29

1 tháng 6 2017

S = \(\dfrac{1}{1.4}\)+ \(\dfrac{1}{4.7}\)+...+\(\dfrac{1}{2002.2005}\)

S = ( 1 - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-...+\(\dfrac{1}{2002}\)-\(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)

S = ( 1 - \(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)

S = \(\dfrac{2004}{2005}\). \(\dfrac{1}{3}\)

S = \(\dfrac{2014}{6015}\)

1 tháng 6 2017

a) \(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{2002.2005}\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2002}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{3}.\dfrac{2004}{2005}=\dfrac{668}{2005}\)

KL.

b) \(P=\dfrac{3}{1.6}+\dfrac{3}{6.11}+\dfrac{3}{11.16}+...+\dfrac{3}{96.101}\)

\(=\dfrac{3}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{5}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{5}.\dfrac{100}{101}=\dfrac{60}{101}\)

KL.

c) \(Q=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)

\(=\dfrac{1}{2}.\dfrac{1}{19800}=\dfrac{1}{39600}\)

KL.

a: \(=\dfrac{1}{4}\cdot\dfrac{12}{5}\cdot\dfrac{100}{7}\cdot\dfrac{49}{100}\)

\(=\dfrac{1}{4}\cdot\dfrac{12}{5}\cdot\dfrac{49}{7}=\dfrac{3}{5}\cdot7=\dfrac{21}{5}\)

b: \(=\dfrac{3}{8}+\dfrac{1}{8}\cdot\dfrac{3}{4}-\dfrac{5}{4}\)

\(=\dfrac{12}{32}+\dfrac{3}{32}-\dfrac{40}{32}=\dfrac{-25}{32}\)

c: \(=\dfrac{4}{9}\left(\dfrac{-13}{27}-\dfrac{14}{27}\right)-\dfrac{5}{9}=\dfrac{-4}{9}-\dfrac{5}{9}=-1\)

d: \(=\dfrac{2}{4}\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+...+\dfrac{4}{91\cdot95}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{91}-\dfrac{1}{95}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{92}{285}=\dfrac{46}{285}\)

8 tháng 3 2017

oho

8 tháng 3 2017

mình ghi nhầm nên các bạn cứ hết hai phân số là một câu nhé ví dụ như \(\dfrac{-5}{8}\):\(\dfrac{15}{4}\)

18 tháng 7 2017

a) \(6\dfrac{5}{7}-\left(1\dfrac{3}{4}+2\dfrac{5}{7}\right)\)

\(=6\dfrac{5}{7}-1\dfrac{3}{4}-2\dfrac{5}{7}\)

\(=\left(6\dfrac{5}{7}-2\dfrac{5}{7}\right)-1\dfrac{3}{4}\)

\(=4-1\dfrac{3}{4}\)

\(=3\dfrac{3}{4}\)

18 tháng 7 2017

b) \(7\dfrac{5}{11}-\left(2\dfrac{3}{7}+3\dfrac{5}{11}\right)\)

\(=7\dfrac{5}{11}-2\dfrac{3}{7}-3\dfrac{5}{11}\)

\(=\left(7\dfrac{5}{11}-3\dfrac{5}{11}\right)-2\dfrac{3}{7}\)

\(=4-2\dfrac{3}{7}\)

\(=2\dfrac{3}{7}\)

21 tháng 6 2017

\(S=\) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

21 tháng 6 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+.....+\dfrac{3}{97.100}\)

\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+....+\dfrac{1}{97}-\dfrac{1}{100}\)

(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với mọi \(a\in N\)*)

\(S=1-\dfrac{1}{100}=\dfrac{99}{100}\)

Vậy \(S=\dfrac{99}{100}\)

Chúc bạn học tốt!!!

2 tháng 7 2018

\(\dfrac{5}{3\cdot7}+\dfrac{5}{7\cdot11}+\dfrac{5}{11\cdot15}+...+\dfrac{5}{\left(4n-1\right)\left(4n+3\right)}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\dfrac{4n}{12n+9}\\ =\dfrac{5n}{12n+9}\)

Mk thực sự nghĩ đề hình như bị sai hay sao ấy!

2 tháng 4 2017

\(S=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+...+\dfrac{5^2}{96.101}\\ S=\dfrac{25}{1.6}+\dfrac{25}{6.11}+\dfrac{25}{11.16}+...+\dfrac{25}{96.101}\\ S=5.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{96.101}\right)\\ S=5.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\\ S=5.\left(1-\dfrac{1}{101}\right)\\ S=5.\dfrac{100}{101}\\ S=\dfrac{500}{101}\)

1 tháng 6 2017

S=500/101

Huỳnh Huyền Linh làm đúng rùi!