Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{27^3\cdot11+9^5\cdot5}{3^9\cdot2^4}\)
\(=\dfrac{3^9\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)
\(=\dfrac{3^9\cdot\left(11+3\cdot5\right)}{3^9\cdot2^4}\)
\(=\dfrac{11+15}{16}\)
\(=\dfrac{26}{16}\)
\(=\dfrac{13}{8}\)
b) \(\dfrac{5^8+2^2\cdot25^4+2^3\cdot125^3-15^4\cdot5^4}{4^2\cdot625^2}\)
\(=\dfrac{5^8+2^2\cdot5^8+2^3\cdot5^9-3^4\cdot5^4\cdot5^4}{2^4\cdot5^8}\)
\(=\dfrac{5^8\cdot\left(1+2^2+2^3\cdot5-3^4\right)}{5^8\cdot2^4}\)
\(=\dfrac{1+4+40-81}{16}\)
\(=\dfrac{-36}{16}\)
\(=\dfrac{-9}{4}\)
c) \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\)
\(=\dfrac{-2}{6}\)
\(=-\dfrac{1}{3}\)
\(A=\dfrac{12^{15}\cdot3^4-4^5\cdot3^9}{27^3\cdot2^{10}-32^3\cdot3^9}\\ =\dfrac{\left(2^2\cdot3\right)^{15}\cdot3^4-\left(2^2\right)^5\cdot3^9}{\left(3^3\right)^3\cdot2^{10}-\left(2^5\right)^3\cdot3^9}\\ =\dfrac{2^{30}\cdot3^{15}\cdot3^4-2^{10}\cdot3^9}{3^9\cdot2^{10}-2^{15}\cdot3^9}\\ =\dfrac{3^9\cdot2^{10}\left(2^{20}\cdot3^{10}\right)}{3^9\cdot2^{10}\left(1-2^5\right)}\\ =\dfrac{\left(2^2\right)^{10}\cdot3^{10}}{1-32}\\ =\dfrac{\left(2^2\cdot3\right)^{10}}{-31}\\ =\dfrac{-12^{10}}{31}\)
\(B=\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{99}{49^2\cdot50^2}\\ =\dfrac{2^2-1^2}{1^2\cdot2^2}+\dfrac{3^2-2^2}{2^2\cdot3^2}+...+\dfrac{50^2-49^2}{49^2\cdot50^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{49^2}-\dfrac{1}{50^2}\\ =1-\dfrac{1}{2500}\\ =\dfrac{2499}{2500}\)
1) \(\dfrac{1}{4}x-\dfrac{1}{3}=\dfrac{-5}{9}\)
\(\Rightarrow\dfrac{1}{4}x=-\dfrac{2}{9}\Rightarrow x=-\dfrac{8}{9}\)
2) \(2^{x-3}-3.2^x=-92\)
\(\Rightarrow2^x\left(2^{-3}-3\right)=-92\)
\(\Rightarrow2^x.\dfrac{-23}{9}=-92\)
\(\Rightarrow2^x=32\Rightarrow x=5\)
a: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
b: \(=\dfrac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}=\dfrac{5}{3}\)
a)\(\dfrac{27^4.4^3}{9^5.8^2}\)
=\(\dfrac{3^{12}.2^6}{3^{10}.2^6}\)
=3\(^2\)=9
b)\(\dfrac{3^{29}.4^{16}}{27^9.8^{11}}\)
=\(\dfrac{3^{29}.2^{32}}{3^{27}.2^{33}}\)
=\(\dfrac{9}{2}\)
\(\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{\left(3^3\right)^4.\left(2^2\right)^3}{\left(3^2\right)^5.\left(2^3\right)^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=\dfrac{3^{12}}{3^{10}}=3^2=9\)
_________
\(\dfrac{3^{29}.4^{16}}{27^9.8^{11}}=\dfrac{3^{29}.\left(2^2\right)^{16}}{\left(3^3\right)^9.\left(2^3\right)^{11}}=\dfrac{3^{29}.2^{32}}{3^{27}.2^{33}}=\dfrac{1}{3^2.2}=\dfrac{1}{9.2}=\dfrac{1}{18}\)
\(\dfrac{x+4}{8}+\dfrac{x+3}{9}=\dfrac{x+2}{10}+\dfrac{x+1}{11}\)
\(\Leftrightarrow\left(\dfrac{x+4}{8}+1\right)+\left(\dfrac{x+3}{9}+1\right)=\left(\dfrac{x+2}{10}+1\right)+\left(\dfrac{x+1}{11}+1\right)\)
\(\Leftrightarrow\dfrac{x+12}{8}+\dfrac{x+12}{9}-\dfrac{x+12}{10}-\dfrac{x+12}{11}=0\)
\(\Leftrightarrow\left(x+12\right)\left(\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}\right)=0\)
\(\Leftrightarrow x=-12\)( do \(\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}\ne0\))
\(\dfrac{x+4}{8}+\dfrac{x+3}{9}=\dfrac{x+2}{10}+\dfrac{x+1}{11}\)
\(\dfrac{x+4}{8}+1+\dfrac{x+3}{9}+1=\dfrac{x+2}{10}+1+\dfrac{x+1}{11}+1\)
\(\dfrac{x+12}{8}+\dfrac{x+12}{9}=\dfrac{x+12}{10}+\dfrac{x+12}{11}\)
\(\dfrac{x+12}{8}+\dfrac{x+12}{9}-\dfrac{x+12}{10}-\dfrac{x+12}{11}=0\)
\(\Rightarrow\left(x+12\right).\left(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)=0\)
Vì \(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\ne0\) nên \(x+12=0\)
\(\Rightarrow x=-12\)
\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{\left(3^2\cdot5\right)^{10}\cdot5^{20}}{\left(3\cdot5^2\right)^{15}}=\dfrac{3^{20}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot5^{30}}=3^5=243\\ \dfrac{6^6+6^3+3^3+3^6}{-73}=\dfrac{46656+216+27+729}{-73}=-\dfrac{47628}{73}\\ \dfrac{27^7+3^{15}}{9^9-27}=\dfrac{\left(3^3\right)^7+3^{15}}{\left(3^2\right)^9-3^3}=\dfrac{3^{21}+3^{15}}{3^{18}-3^3}=\dfrac{3^{15}\left(3^6+1\right)}{3^3\left(3^{15}-1\right)}=\dfrac{3^5\cdot730}{3^{15}-1}\\ \dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
\(\dfrac{3^{10}\cdot11+9^5\cdot5}{27^3\cdot2^4}\cdot x=-9\)
\(\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\cdot x=-9\)
\(\dfrac{3\cdot3^9\cdot16}{3^9\cdot16}\cdot x=-9\)
3x = -9
\(x=-\dfrac{9}{3}=-3\)
\(\dfrac{3\cdot3^9\cdot\left(11+5\right)}{3^9\cdot16}\cdot x=-9\)