Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9

a: \(\Leftrightarrow2x+3=14-6\sqrt{5}\)
=>2x=11-6 căn 5
hay \(x=\dfrac{11-6\sqrt{5}}{2}\)
b: \(\Leftrightarrow\sqrt{7x}+5=11+4\sqrt{7}\)
=>căn 7x=6+4 căn 7
=>\(x=\dfrac{\left(6+4\sqrt{7}\right)^2}{7}\)
d: \(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
=>-căn x-1=-17
=>căn x-1=17
=>x-1=289
=>x=290

1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............

Câu 1:
ĐK: \(x\geq \frac{-3}{2}\)
\(\sqrt{2x+3}=3-\sqrt{5}\)
\(\Rightarrow 2x+3=(3-\sqrt{5})^2=14-6\sqrt{5}\)
\(\Rightarrow x=\frac{11-6\sqrt{5}}{2}\)
Câu 2: ĐK: \(x\geq 0\)
\(\sqrt{5+\sqrt{7x}}=2+\sqrt{7}\)
\(\Rightarrow 5+\sqrt{7x}=(2+\sqrt{7})^2=11+4\sqrt{7}\)
\(\Rightarrow \sqrt{7x}=6+4\sqrt{7}\)
\(\Rightarrow 7x=(6+4\sqrt{7})^2\Rightarrow x=\frac{(6+4\sqrt{7})^2}{7}\)
Câu 3: ĐK: \(x\geq 0\)
\((\sqrt{x}-2)(5-\sqrt{x})=4-x\)
\(\Leftrightarrow 5\sqrt{x}-x-10+2\sqrt{x}=4-x\)
\(\Leftrightarrow 7\sqrt{x}=14\Rightarrow \sqrt{x}=2\Rightarrow x=4\)
Câu 4: ĐK: \(x\ge 1\)
Sửa đề \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
\(\Leftrightarrow \frac{\sqrt{x-1}}{2}-\frac{3}{2}\sqrt{9}.\sqrt{x-1}+24\sqrt{\frac{1}{64}}\sqrt{x-1}=-17\)
\(\Leftrightarrow \frac{\sqrt{x-1}}{2}-\frac{9\sqrt{x-1}}{2}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow \sqrt{x-1}(\frac{1}{2}-\frac{9}{2}+3)=-17\)
\(\Leftrightarrow -\sqrt{x-1}=-17\Rightarrow \sqrt{x-1}=17\Rightarrow x=17^2+1=290\)

\(\sqrt{28-6\sqrt{3}}\)
\(=\sqrt{\left(3\sqrt{3}-1\right)^2}\)
\(=3\sqrt{3}-1\)
\(\sqrt{6-\sqrt{20}}\)
\(=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-1\)
\(\sqrt{2x+3+2\sqrt{\left(x+1\right)\left(x+2\right)}}\)
\(=\sqrt{\left(\sqrt{x+2}+\sqrt{x+1}\right)^2}\)
\(=\sqrt{x+2}+\sqrt{x+1}\)
\(\sqrt{2x+2-2\sqrt{x^2+2x-3}}\)
\(=\sqrt{\left(x-1\right)-2\sqrt{\left(x-1\right)\left(x+3\right)}+\left(x+3\right)}\)
\(=\sqrt{\left(\sqrt{x+3}-\sqrt{x-1}\right)^2}\)
\(=\left|\sqrt{x+3}-\sqrt{x-1}\right|\)
\(\sqrt{21-6\sqrt{6}}+\sqrt{21+6\sqrt{6}}\)
\(=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\)
\(=6\sqrt{2}\)
\(M=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)\(\left[\dfrac{\left(\sqrt{x}+1\right)-\left(3-\sqrt{x}\right)}{\sqrt{x}+1}\right]\)
\(=\left[\dfrac{\left(x+\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}\right]\times\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}\times2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

3) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{4x-20}=4\)
\(\Leftrightarrow4x-20=16\)
\(\Leftrightarrow4x=36\)
\(\Leftrightarrow x=9\)
vậy ...
1)
\(A=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}\right)^2-2^2}\\ A=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)
\(B=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{x^2-2x\sqrt{2}+\left(\sqrt{2}\right)^2}{x^2-\sqrt{2}}\\ B=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\dfrac{\left(x-\sqrt{2}\right)}{\left(x+\sqrt{2}\right)}\)
\(C=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+\left(\sqrt{5}\right)^2}\\ C=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)
\(D=\dfrac{\sqrt{a}-2a}{2\sqrt{a}-1}=\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)}{2\sqrt{a}-1}=\sqrt{a}\)
\(E=\dfrac{x^2-2}{x-\sqrt{2}}=\dfrac{x^2-\left(\sqrt{2}\right)^2}{x-\sqrt{2}}\\ E=\dfrac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=x+\sqrt{2}\)
\(F=\dfrac{\sqrt{x}-3}{x-9}=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}\right)^2-3^2}\\ F=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ F=\dfrac{1}{\sqrt{x}+3}\)

\(Q=\dfrac{3x-\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}=\dfrac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{3x-3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3x-3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
\(\dfrac{2x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{2x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)