K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2023

\(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-2\sqrt{2}=\dfrac{\sqrt{8}-\sqrt{7}}{\left(\sqrt{8}-\sqrt{7}\right)\left(\sqrt{8}+\sqrt{7}\right)}+\sqrt{25.7}-2\sqrt{2}\)

\(=\dfrac{\sqrt{8}-\sqrt{7}}{1}+5\sqrt{7}-2\sqrt{2}=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-2\sqrt{2}\)

\(=4\sqrt{7}\)

10 tháng 6 2018

B=\(2\sqrt{18}-4\sqrt{32}+\sqrt{72}+3\sqrt{8}\)

\(=6\sqrt{2}-16\sqrt{2}+6\sqrt{2}+6\sqrt{2}\)

\(=2\sqrt{2}\)

11 tháng 6 2018

\(B=2\sqrt{18}-4\sqrt{32}+\sqrt{72}+3\sqrt{8}\)

\(=6\sqrt{2}-16\sqrt{2}+6\sqrt{2}+6\sqrt{2}\)

\(=\sqrt{2}\left(6-16+6+6\right)\)

\(=2\sqrt{2}\)

Câu 1: 

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)

\(\Leftrightarrow1-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)

=>n+1=3000

hay n=2999

\(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+3\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{a-4}\)

\(=\dfrac{5a+15\sqrt{a}-3\sqrt{a}-9+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{a-4}\)

\(=\dfrac{-a^2+8a+5\sqrt{a}-19}{a-4}\)

1 tháng 8 2021

undefined

1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

Để \(P=\dfrac{7}{2}\) thì \(2x+2\sqrt{x}+2-7\sqrt{x}=0\)

\(\Leftrightarrow2x-4\sqrt{x}-\sqrt{x}+2=0\)

\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)

\(A=\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}\)

=>\(A^2=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}-2\sqrt{4}\)

=>A^2=2căn 7-4

=>A=2căn 7-4

=>\(M=\dfrac{2\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=2\)