K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(1/m+1/n+1/p)^2=25

=>1/m^2+1/n^2+1/p^2+2(1/mn+1/pn+1/mp)=25

=>\(5+2\cdot\dfrac{m+n+p}{mnp}=25\)

=>\(2\cdot\dfrac{m+n+p}{mnp}=20\)

=>\(\dfrac{m+n+p}{mnp}=10\)

=>m+n+p=10mnp

18 tháng 3 2018

a, vì m>n

=> m+7>n+7

b, vì m>n

=> -2m<-2n

=>-2m-8<-2n-8

c, vì m>n

=>m+1>n+1

mà m+3>m+1

=>m+3>n+1

phần d,e,f máy mình cùi nên không hiện ra phép tính. sr nhiều

18 tháng 3 2018

m>n

a) m+7 và m+7

ta có : m>n

=> m+7 > n+7

b) -2m+8 và -2n+8

ta có : m>n

=> -2m > -2n

=> -2m+8 > -2n+8

c) m+3 và m+1

ta có : 3 >1

=> m+3 > m+1

d) \(\dfrac{1}{2}\) \(\left(m-\dfrac{1}{4}\right)\)\(\dfrac{1}{2}\)\(\left(n-\dfrac{1}{4}\right)\)

ta có: m > n

=> \(m-\dfrac{1}{4}\) > \(n-\dfrac{1}{4}\)

=>\(\dfrac{1}{2}\left(m-\dfrac{1}{4}\right)\)>\(\dfrac{1}{2}\left(n-\dfrac{1}{4}\right)\)

e) \(\dfrac{4}{5}-6\)m và \(\dfrac{4}{5}-6n\)

ta có : m > n

=> -6m > -6n

=> \(\dfrac{4}{5}-6m>\dfrac{4}{5}-6n\)

f) \(-3\left(m+4\right)+\dfrac{1}{2}\)\(-3\left(n+4\right)+\dfrac{1}{2}\)

ta có : m > n

=> m=4 > n+4

=> -3(m+4) > -3(m+4)

=>\(-3\left(m+4\right)+\dfrac{1}{2}>-3\left(n+4\right)+\dfrac{1}{2}\)

18 tháng 3 2017

\(\dfrac{1}{2}+\dfrac{1}{n}>\dfrac{1}{4}+\dfrac{2}{5}\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{n}>0,65\)

\(\Leftrightarrow\dfrac{1}{n}>\dfrac{3}{20}\Leftrightarrow\dfrac{20}{20n}>\dfrac{3n}{20n}\Rightarrow20>3n\Rightarrow n< 7\)

vậy n = 6

19 tháng 3 2017

\(\dfrac{1}{2}+\dfrac{1}{n}>\dfrac{1}{4}+\dfrac{2}{5}\\\)

<=> \(0.5+\dfrac{1}{n}>0.25+0.4\) <=> \(0.5+\dfrac{1}{n}>0.65\) <=> 1/n >0.15 <=>n=6

25 tháng 8 2017

\(a^2+b^2+c^2=\dfrac{5}{3}< 2\)

\(a^2+b^2+c^2\ge2bc+2ac-2ab\)

Do đó : \(2bc+2ac-2ab< 2\)

Chia cả hai vế cho 2abc ta được

\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\) (đpcm)

29 tháng 3 2018

Ta có: \(m+n+k=0\)

\(\Leftrightarrow m+n=-k\)

\(\Leftrightarrow\left(m+n\right)^2=\left(-k\right)^2\)

\(\Leftrightarrow m^2+2mn+n^2=k^2\)

\(\Leftrightarrow m^2+n^2-k^2=-2mn\)

Tương tự, ta có: \(n^2+k^2-m^2=-2nk\)

\(k^2+m^2-n^2=-2km\)

Thay \(m^2+n^2-k^2=-2mn;n^2+k^2-m^2=-2nk;\)\(k^2+m^2-n^2=-2km\) vào biểu thức M ta có:

M = \(\dfrac{1}{-2mn}+\dfrac{1}{-2nk}+\dfrac{1}{-2km}=\dfrac{-1}{2}\left(\dfrac{1}{mn}+\dfrac{1}{nk}+\dfrac{1}{km}\right)\)

M = \(\dfrac{-1}{2}\left(\dfrac{nk^2m+m^2nk+mn^2k}{m^2n^2k^2}\right)\)

\(M=\dfrac{-1}{2}\left(\dfrac{mnk\left(k+m+n\right)}{m^2n^2k^2}\right)\)

M = \(\dfrac{-1}{2}.\dfrac{0}{mnk}\)\(=0\)

27 tháng 6 2017

câu b) mình có cách giải khác nè

\(N=\dfrac{3655}{11676}=\dfrac{1}{\dfrac{11676}{3655}}=\dfrac{1}{3+\dfrac{711}{3655}}=\dfrac{1}{3+\dfrac{1}{\dfrac{3655}{711}}}=\dfrac{1}{3+\dfrac{1}{5+\dfrac{100}{711}}}=\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{7+\dfrac{11}{100}}}}=\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{7+\dfrac{1}{9+\dfrac{1}{11}}}}}\)

theo pp cân bằng hệ số ta tìm đc a=9 ; b=11

27 tháng 6 2017

a)

\(M=\dfrac{1}{7+\dfrac{1}{5+\dfrac{1}{3+\dfrac{1}{2}}}}+\dfrac{1}{9+\dfrac{1}{8+\dfrac{1}{7+\dfrac{1}{6}}}}\)

\(=\dfrac{1}{7+\dfrac{1}{5+\dfrac{1}{\dfrac{7}{2}}}}+\dfrac{1}{9+\dfrac{1}{8+\dfrac{1}{\dfrac{43}{6}}}}\)

\(=\dfrac{1}{7+\dfrac{1}{5+\dfrac{2}{7}}}+\dfrac{1}{9+\dfrac{1}{8+\dfrac{6}{43}}}\)

\(=\dfrac{1}{7+\dfrac{1}{\dfrac{37}{7}}}+\dfrac{1}{9+\dfrac{1}{\dfrac{350}{43}}}\)

\(=\dfrac{1}{7+\dfrac{7}{37}}+\dfrac{1}{9+\dfrac{43}{350}}\)

\(=\dfrac{1}{\dfrac{266}{37}}+\dfrac{1}{\dfrac{3193}{350}}\)

\(=\dfrac{37}{266}+\dfrac{350}{3193}\)

\(=\dfrac{211241}{849338}\)

b)

\(N=\dfrac{3655}{11676}\Leftrightarrow\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{7+\dfrac{1}{a+\dfrac{1}{b}}}}}=\dfrac{3655}{11676}\)

\(\Leftrightarrow-\dfrac{36ab+36+5b}{115ab+115+16b}=\dfrac{3655}{11676}\)

dễ rồi lm tiếp nhé

26 tháng 2 2018

bài này đúng là thị của phi...vô của lí ... :))

15 tháng 4 2018

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Leftrightarrow yz+zx+xy=0\)

\(\Leftrightarrow\left[{}\begin{matrix}yz=-zx-xy\\zx=-xy-yz\\xy=-yz-zx\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{x^2+2yz}=\dfrac{1}{x^2-xz-xy+yz}=\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)

CMTT\(\Rightarrow\dfrac{1}{y^2+2zx}=\dfrac{1}{\left(y-z\right)\left(y-x\right)}\)

\(\dfrac{1}{z^2+2xy}=\dfrac{1}{\left(z-x\right)\left(z-y\right)}\)

\(\Rightarrow A=\dfrac{1}{\left(x-y\right)\left(x-z\right)}+\dfrac{1}{\left(y-z\right)\left(y-x\right)}+\dfrac{1}{\left(z-x\right)\left(z-y\right)}\)

\(A=\dfrac{y-z}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\dfrac{z-x}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\dfrac{x-y}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{y-z+z-x+x-y}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=0\left(đpcm\right)\)