\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt P= 1/4^2+1/6^2+1/8^2+...1/2n^2

= > P= 1/2.(2/2.4+2/4.6+2/6.8+...+ 2/(2n-2).2n)

=> P= 1/2.(1/2-1/2n)

=> P= 1/2.1/2-1/2.1/2n

=> P = (1/4 -1/2.1/2n)(1/4

Vậy P<1/4 ( đcpcm)

8 tháng 9 2017

Bài 1:

a, \(\left(x-2\right)^2=9\)

\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)

b, \(\left(3x-1\right)^3=-8\)

\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)

\(\Rightarrow x=-\dfrac{1}{3}\)

c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)

\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)

\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)

d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)

\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)

\(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)

e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)

\(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)

f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\)\(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!
18 tháng 9 2017

a/ Ta có :

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...........+\dfrac{1}{n^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

.......................

\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\Leftrightarrow A< 1-\dfrac{1}{n}< 1\)

\(\Leftrightarrow A< 1\)

b/ Ta có :

\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+.................+\dfrac{1}{\left(2n\right)^2}\)

\(=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{4^2}+..........+\dfrac{1}{n^2}\right)\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..................

\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow B< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.........+\dfrac{1}{\left(n-1\right)n}\right)\)

\(\Leftrightarrow B< \dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)

\(\Leftrightarrow B< \dfrac{1}{4}\left(1+1-\dfrac{1}{n}\right)\)

\(\Leftrightarrow B< \dfrac{1}{2}-\dfrac{1}{4n}< \dfrac{1}{2}\)

\(\Leftrightarrow B< \dfrac{1}{2}\)

19 tháng 9 2017

\(\)\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(A< 1-\dfrac{1}{n}< 1\)

\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2n^2}\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2n^2}\right)\)

\(B=\dfrac{1}{4}+\dfrac{1}{2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2n^2}\right)\)

\(B< \dfrac{1}{4}+\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{\left(n-1\right)n}\right)\)

6 tháng 5 2018

\(\dfrac{1}{7}=\dfrac{8}{-x}\)=> \(-x=56\)

=> \(x=56\)

2) => 18x = 18

=> x = 1

3) \(\dfrac{-4}{3}+x=\dfrac{-11}{6}\)

=> \(x=\dfrac{-11}{6}+\dfrac{4}{3}\)

=> \(x=\dfrac{-1}{2}\)

4) 45%.x =\(\dfrac{3}{5}\)

=> \(x=\dfrac{3}{5}:\dfrac{9}{20}\)

=> \(x=\dfrac{4}{3}\)

24 tháng 4 2017

cho minh xin yeu cau de bai

26 tháng 4 2017

trả hiểu yêu cầu đề bài là j cả

6 tháng 4 2017

a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)

\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)

a: \(=\dfrac{5\cdot\left(8-6\right)}{10}=\dfrac{5\cdot2}{10}=1\)

b: \(\dfrac{\left(-4\right)^2}{5}=\dfrac{16}{5}\)

\(B=\dfrac{3}{7}-\dfrac{1}{5}-\dfrac{3}{7}=-\dfrac{1}{5}\)

c: \(C=\left(6-2.8\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\)

\(=\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}\)

\(=5\cdot2-\dfrac{32}{5}=10-\dfrac{32}{5}=\dfrac{18}{5}\)

d: \(D=\left(\dfrac{-5}{24}+\dfrac{18}{24}+\dfrac{14}{24}\right):\dfrac{-17}{8}\)

\(=\dfrac{27}{24}\cdot\dfrac{-8}{17}=\dfrac{-9}{8}\cdot\dfrac{8}{17}=\dfrac{-9}{17}\)

30 tháng 3 2017

a) \(5\dfrac{3}{8}-1\dfrac{9}{10}=\dfrac{43}{8}-\dfrac{19}{10}=\dfrac{215}{40}-\dfrac{76}{40}=\dfrac{139}{40}\)

b) \(\left(-3\dfrac{1}{4}\right)+\left(-2\dfrac{1}{3}\right)=-\dfrac{13}{4}+\left(-\dfrac{7}{3}\right)=-\dfrac{39}{12}+\left(-\dfrac{28}{12}\right)=\dfrac{-67}{12}\)

c) \(\left(-5\dfrac{1}{8}\right)+3\dfrac{2}{4}=\left(-\dfrac{41}{8}\right)+\dfrac{14}{4}=\left(-\dfrac{41}{8}\right)+\dfrac{28}{8}=-\dfrac{13}{8}\)

d)\(\left(-3\right)-\left(-2\dfrac{2}{5}\right)=\left(-3\right)-\left(-\dfrac{12}{5}\right)=\left(-\dfrac{15}{5}\right)+\left(-\dfrac{12}{5}\right)=-\dfrac{27}{5}\)

2 tháng 4 2017

Từ gt ta có:
\(\dfrac{13}{3}.\left(-\dfrac{1}{3}\right)\le x\le\dfrac{2}{3}.\left(-\dfrac{11}{12}\right)\)
\(\Leftrightarrow\dfrac{-13}{9}\le x\le-\dfrac{11}{18}\)
\(\Leftrightarrow\dfrac{-26}{18}\le x\le-\dfrac{11}{18}\)
Suy ra \(26\ge x\ge11\)
Vậy \(11\le x\le26\) ( x thuộc Z ) là các giá trị cần tìm

2 tháng 4 2017

\(4\dfrac{1}{3}.\left(\dfrac{1}{6}-\dfrac{1}{2}\right)\le x\le\dfrac{2}{3}.\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)\)

\(\dfrac{13}{3}.\dfrac{-1}{3}\le x\le\dfrac{2}{3}.\dfrac{-11}{12}\)

\(\dfrac{-13}{9}\)\(\le x\le\)\(\dfrac{-11}{18}\)

\(\dfrac{-26}{18}\)\(\le x\le\dfrac{-11}{18}\)

\(\Rightarrow x\in\left\{\dfrac{-12}{18};\dfrac{-13}{18};\dfrac{-14}{18};\dfrac{-15}{18};...;\dfrac{-24}{18};\dfrac{-25}{18}\right\}\)Tick hộ mình nha bạn