Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 => (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 và 1/61> 1/62> ... >1/79> 1/80 => (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 => 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12 => ĐPCM
Ta có : 1/41 + 1/42 + ... + 1/60 > 1/60 * 20 = 1/3 .
1/61 + 1/62 + ... + 1/80 > 1/80 * 20 = 1/4 .
⇒ 1/41 + 1/42 + ... + 1/80 > 1/3 + 1/4 = 4/12 + 3/12 .
= 7/12 .
Do đó : A > 7/12 .
Vậy bài toán được chứng minh .
Đặt \(A=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+\dfrac{1}{44}+...+\dfrac{1}{80}\)
\(=\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}\right)+\) \(\left(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}\right)\)
Nhận xét:
\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}\) \(=\dfrac{1}{3}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}>\dfrac{1}{80}+\dfrac{1}{80}+...+\dfrac{1}{80}\) \(=\dfrac{1}{4}\)
\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}>\dfrac{1}{12}\)
Vậy \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{1}{12}\) (Đpcm)
B=\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
B=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
B=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
B= 1-\(\dfrac{1}{8}\)
B= \(\dfrac{7}{8}\)
\(A=\dfrac{5}{9}-\dfrac{5}{8}+\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{-3}{8}+\dfrac{1}{3}\\ =\dfrac{5}{9}+\dfrac{-5}{8}+\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{-3}{8}+\dfrac{1}{3}\\= \left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\left(\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(\dfrac{-5}{8}+\dfrac{-3}{8}\right)\\ =1+1+\left(-1\right)\\ =2+\left(-1\right)\\ =1\)
a: \(A=\left(\dfrac{-3}{4}+\dfrac{-2}{9}-\dfrac{1}{36}\right)+\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{3}{5}\right)+\dfrac{1}{57}\)
\(=\dfrac{-27-8-1}{36}+\dfrac{5+1+9}{15}+\dfrac{1}{57}\)
=1/57
b: \(B=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}-\dfrac{5}{7}-\dfrac{3}{35}\right)+\dfrac{1}{41}\)
\(=\dfrac{3+1+2}{6}+\dfrac{-7-25-3}{35}+\dfrac{1}{41}\)
=1/41
c: \(C=\left(\dfrac{-1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\dfrac{1}{107}\)
=1-1+1/107
=1/107
a, Ta có :
\(\dfrac{1}{6}< \dfrac{1}{5}\)
\(\dfrac{1}{7}< \dfrac{1}{5}\)
.................
\(\dfrac{1}{9}< \dfrac{1}{5}\)
\(\dfrac{1}{10}=\dfrac{1}{10}\)
\(\dfrac{1}{11}< \dfrac{1}{10}\)
..................
\(\dfrac{1}{17}< \dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+......+\dfrac{1}{17}< \dfrac{1}{5}+\dfrac{1}{5}+....+\dfrac{1}{5}\)
\(\Leftrightarrow A< \dfrac{1}{5}.5+\dfrac{1}{10}.8\)
\(\Leftrightarrow A< 1+\dfrac{4}{5}=\dfrac{9}{5}< 2\)
\(\Leftrightarrow A< 2\left(đpcm\right)\)
b/ Ta có :
\(\dfrac{1}{11}>\dfrac{1}{30}\)
\(\dfrac{1}{12}>\dfrac{1}{30}\)
...............
\(\dfrac{1}{29}>\dfrac{1}{30}\)
\(\dfrac{1}{30}=\dfrac{1}{30}\)
\(\Leftrightarrow\dfrac{1}{11}+\dfrac{1}{12}+........+\dfrac{1}{30}>\dfrac{1}{30}+\dfrac{1}{30}+.......+\dfrac{1}{30}\)
\(\Leftrightarrow B>\dfrac{1}{30}.20=\dfrac{2}{3}\)
\(\Leftrightarrow B>\dfrac{2}{3}\left(đpcm\right)\)
\(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{1}{4}\) và \(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{1}{20}\)
Suy ra:
\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
E=\(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\\ E=\dfrac{1}{90}-\left(\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{2}\right)\\ E=\dfrac{1}{90}-\left(\dfrac{1}{9.8}+\dfrac{1}{8.7}+\dfrac{1}{7.6}+\dfrac{1}{6.5}+\dfrac{1}{5.4}+\dfrac{1}{4.3}+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\\ E=\dfrac{1}{90}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)\\ E=\dfrac{1}{90}-\left(1-\dfrac{1}{9}\right)\\ E=\dfrac{1}{90}-\dfrac{8}{9}\\ E=\dfrac{1}{90}-\dfrac{80}{90}\\ E=-\dfrac{79}{90}\)Vậy:\(E=-\dfrac{79}{90}\)
E=\(\dfrac{1}{10.9}-\dfrac{1}{9.8}-\dfrac{1}{8.7}-\dfrac{1}{7.6}-\dfrac{1}{6.5}-\dfrac{1}{5.4}-\dfrac{1}{4.3}-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
E=\(\dfrac{1}{10}-\dfrac{1}{1}\)
E=\(\dfrac{-9}{10}\)
A=\(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-3}\)
A=\(\left(\dfrac{2}{7}+\dfrac{11}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{3}+\dfrac{5}{-3}\right)+\dfrac{-3}{8}\)
A=\(2+\dfrac{-4}{3}+\dfrac{-3}{8}\)
A=\(\dfrac{7}{24}\)
B=\(\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{-18}{35}+\dfrac{17}{-35}\right)+\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)\)
B=\(\dfrac{17}{17}+\dfrac{-35}{35}+\dfrac{-13}{13}\)
B=\(1+\left(-1\right)+\left(-1\right)=-1\)
C=\(\dfrac{-3}{17}+\left(\dfrac{2}{3}+\dfrac{3}{17}\right)\)
C=\(\dfrac{-3}{17}+\dfrac{2}{3}+\dfrac{3}{17}=\left(\dfrac{-3}{17}+\dfrac{3}{17}\right)+\dfrac{2}{3}\)
C=0+\(\dfrac{2}{3}=\dfrac{2}{3}\)
D=\(\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)
D=\(\dfrac{-1}{6}+\dfrac{5}{-12}+\dfrac{7}{12}\)
D=\(\dfrac{-2}{12}+\dfrac{-5}{12}+\dfrac{7}{12}=\left(\dfrac{-2}{12}+\dfrac{-5}{12}\right)+\dfrac{7}{12}\)
D=\(\dfrac{-7}{12}+\dfrac{7}{12}=0\)
Sửa đề là chứng minh nha bạn.
Ta có: \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{1}{41}+\dfrac{1}{41}+\dfrac{1}{41}+...+\dfrac{1}{41}\)(40 phân số \(\dfrac{1}{41}\))
\(=\dfrac{1.40}{41}=\dfrac{40}{41}>\dfrac{7}{12}\) (*)
Từ (*) suy ra: \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{7}{12}^{\left(đpcm\right)}\)
đpcm là gì