K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:

Đặt biểu thức trên là $A$.
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{37.38.39}\)

\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)

\(=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\)

\(\Rightarrow A=\frac{185}{741}\)

 

 

5 tháng 2 2018

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+.......+\dfrac{1}{37.38.39}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.....+\dfrac{1}{37.38}-\dfrac{1}{38.39}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{38.39}\)

\(=\dfrac{370}{741}\)

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+......+\dfrac{1}{37.38.39}\)

Ta có:

\(\dfrac{1}{1.2.3}=\dfrac{1}{1.2}-\dfrac{1}{2.3}\); \(\dfrac{1}{2.3.4}=\dfrac{1}{2.3}-\dfrac{1}{3.4}\);.......

\(\Rightarrow A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...........+\dfrac{1}{37.38}-\dfrac{1}{38.39}\)

\(\Rightarrow A=\dfrac{1}{1.2}-\dfrac{1}{38.39}\)

\(=\dfrac{370}{741}\)

Vậy \(A=\dfrac{370}{741}\)

1 tháng 10 2023

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{48\cdot49\cdot50}\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-...+\dfrac{1}{48\cdot49}-\dfrac{1}{49\cdot50}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{49\cdot50}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2450}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{612}{1225}\)

\(=\dfrac{306}{1225}\)

26 tháng 9 2021

\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)

\(=\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)

20 tháng 9 2017

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)+1\left(n+2\right)}\right)\)

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n^2+2n+n+2}\right)\)

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n^2+3n+2}\right)\)

\(S_n=\dfrac{1}{4}-\dfrac{1}{2\left(n^2+3n+2\right)}\)

\(S_n=\dfrac{1}{4}-\dfrac{1}{2n^2+6n+4}\)

\(S_n=\dfrac{2n^2+6n+4}{4\left(2n^2+6n+4\right)}-\dfrac{4}{4\left(2n^2+6n+4\right)}\)

\(S_n=\dfrac{2n^2+6n+4}{8n^2+48n+16}-\dfrac{4}{8n^2+48n+16}\)

\(S_n=\dfrac{2n^2+6n}{8n^2+48n+16}\)

\(S_n=\dfrac{2\left(n^2+3n\right)}{2\left(4n^2+24n+8\right)}=\dfrac{n^2+3n}{4n^2+24n+8}\)

20 tháng 9 2017

\(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\\ 2S_n=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\\ 2S_n=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\\ =\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\\ =\dfrac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\\ =>S_n=\dfrac{\left(n+1\right)\left(n+2\right)-2}{4\left(n+1\right)\left(n+2\right)}\)

Giải sai r nhéLinh Nguyễn

14 tháng 11 2017

theo mình thì

Ta chứng minh được bài toán tổng quát sau

2/[(n-1)n(n+1)] = 1/[(n-1)n] - 1/[n(n+1)]

Áp dụng:

ta có 2C = 1/(1.2) - 1/ (2.3) +1/(2.3) - 1/(3.4) + ...+ 1/18.19 - 1/19.20

= 1/(1.2) - 1/(19.20) = [190 - 1] / 19.20 = 189/380

=> C = 189/ 760

14 tháng 11 2017

mình nhầm

13 tháng 11 2017

1/1.2.3+1/2.3.4+1/3.4.5+...+1/37.38.39

= 1/2.(1/1.2-1/2.3)+1/2.(1/2.3-1/3.4)+...+1/2.(1/37.38-1/38.39)

= 1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/37.38-1/38.39)

= 1/2.(1/1.2-1/38.39)

= 1/2.370/741

= 185/741

4 tháng 8 2015

D = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{37.38.39}\)

D = \(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{39-37}{37.38.39}\right)\)

D = \(\frac{1}{2}.\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{39}{37.38.39}-\frac{37}{37.38.39}\right)\)

D = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

D = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{38.39}\right)\)

D = \(\frac{1}{2}.\frac{370}{741}\)

D = \(\frac{185}{741}\)

9 tháng 10 2016

21320

21 tháng 3 2017

Em nói thật em mới học lớp 6 Màu em đã phải làm bài này rồi thật đấu không phải đùa đâu