K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow-\dfrac{93}{23}:\left(\dfrac{13}{4}-x\cdot\dfrac{5}{3}\right)=1-\dfrac{99}{46}=-\dfrac{53}{46}\)

\(\Leftrightarrow\dfrac{13}{4}-\dfrac{5}{3}x=-\dfrac{99}{23}:-\dfrac{53}{46}=\dfrac{198}{53}\)

=>5/3x=-103/212

hay x=-309/1060

1 tháng 5 2018

các bạn giúp mình đang cần gấp

15 tháng 11 2017

1) \(A=1+2+2^2+2^3+......+2^{2015}\)

\(\Leftrightarrow2A=2+2^2+2^3+......+2^{2016}\)

\(\Leftrightarrow2A-A=\left(2+2^2+2^3+......+2^{2016}\right)-\left(1+2+2^2+2^3+......+2^{2015}\right)\)

\(\Leftrightarrow A=2^{2016}-1\)

Vậy \(A=2^{2016}-1\)

6)Ta có: \(13+23+33+43+.......+103=3025\)

\(\Leftrightarrow2.13+2.23+2.33+2.43+.......+2.103=2.3025\)

\(\Leftrightarrow26+46+66+86+.......+206=6050\)

\(\Leftrightarrow\left(23+3\right)+\left(43+3\right)+\left(63+3\right)+\left(83+3\right)+.......+\left(203+3\right)=6050\)

\(\Leftrightarrow23+43+63+83+.......+203+3.10=6050\)

\(\Leftrightarrow23+43+63+83+.......+203+=6050-30\)

\(\Leftrightarrow23+43+63+83+.......+203+=6020\)

Vậy S=6020

15 tháng 11 2017

b, B có 19 thừa số

=> \(-B=(1-\frac{1}{4})(1-\frac{1}{9})(1-\frac{1}{16})...(1-\frac{1}{400}) \)

<=>\(-B=\frac{(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)...(20-1)(20+1)}{4.9.16...400} \)

<=>\(-B=\frac{(1.2.3.4...19)(3.4.5...21)}{(2.3.4.5.6...20)(2.3.4.5...20)} \)

<=>\(-B=\frac{21}{20.2} =\frac{21}{40} \)

<=>\(B=\frac{-21}{40} \)

31 tháng 10 2018

a) \(\dfrac{3}{5}.\dfrac{1}{x}-\dfrac{1}{3}=\dfrac{4}{6}\)

\(\Leftrightarrow\dfrac{3}{5x}=1\)

\(\Leftrightarrow x=\dfrac{5}{3}\)

b) \(\dfrac{x}{2}=-\dfrac{2y}{8}=\dfrac{3z}{15}\)

áp dụng dãy tí số = nhau

\(\dfrac{x}{2}=-\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{2+8+15}=\dfrac{1200}{15}=80\)

\(\Leftrightarrow\dfrac{x}{2}=80\Rightarrow x=160\)

\(\Leftrightarrow-\dfrac{y}{4}=80\Rightarrow y=-320\)

\(\Leftrightarrow\dfrac{z}{5}=80\Rightarrow z=400\)

20 tháng 5 2017

\(5A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{11}{5^{11}}.\)

\(4A=5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}=B-\dfrac{11}{5^{12}}.\)

\(5B=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{10}}.\)

\(4B=5B-B=1-\dfrac{1}{5^{11}}\)

\(\Rightarrow4A=\dfrac{1}{4}\left(1-\dfrac{1}{5^{11}}\right)-\dfrac{1}{5^{12}}< \dfrac{1}{4}\Rightarrow A< \dfrac{1}{16}\)

2 tháng 2 2021

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

2 tháng 2 2021

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

a: \(A=\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}:\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}:\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}-5}{\left(2\sqrt{x}-3\right)}\cdot\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

b: Thay \(x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\) vào A, ta được:

\(A=\left(3\cdot\dfrac{\sqrt{2}-1}{2}-5\right):\left(2\cdot\dfrac{\sqrt{2}-1}{2}+1\right)\)

\(=\dfrac{3\sqrt{2}-3-10}{2}:\dfrac{2\sqrt{2}-2+2}{2}\)

\(=\dfrac{3\sqrt{2}-13}{2\sqrt{2}}=\dfrac{6-13\sqrt{2}}{4}\)

\(A=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}-\dfrac{1}{\sqrt{a}-2}\)

=\(\dfrac{\left(\sqrt{a}+2\right).\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{\left(\sqrt{a}-4\right).\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

Điều kiện bạn tự ghi nhé haha

\(B=\dfrac{1}{\sqrt{a}+1}:\left(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-3}+\dfrac{\sqrt{a}+2}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}+1}:\left(\dfrac{\left(\sqrt{a}+3\right).\left(\sqrt{a}-3\right)-\left(\sqrt{a}-2\right).\left(\sqrt{a}+2\right)+\sqrt{a}+2}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}+1}:\dfrac{a-9-a+4+\sqrt{a}+2}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{1}{\sqrt{a}+1}:\dfrac{\sqrt{a}-3}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{1}{\sqrt{a}+1}:\dfrac{1}{\sqrt{a}-2}\)

\(=\dfrac{1}{\sqrt{a}+1}.\dfrac{\sqrt{a}-2}{1}=\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\)