Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{48}{25}\cdot\dfrac{27}{55}+2\dfrac{4}{9}\cdot\dfrac{14}{33}\)
\(=\dfrac{1296}{1375}+\dfrac{22}{9}\cdot\dfrac{14}{33}\\ =\dfrac{1296}{1375}+\dfrac{28}{27}\\ =\dfrac{34992}{37125}+\dfrac{38500}{37125}\\ =\dfrac{73492}{37125}\)
\(1\dfrac{19}{22}\cdot\left(\dfrac{47}{77}-\dfrac{16}{15}\right)\\ =\dfrac{41}{22}\cdot\dfrac{-527}{1155}\\ =\dfrac{-21607}{25410}\)
\(\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)-\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\\ =\left(\dfrac{307}{99}+\dfrac{37}{99}-\dfrac{1503}{299}\right)-0\\ =\dfrac{344}{99}-\dfrac{1053}{299}\\ =-\dfrac{107}{2277}\)
a: 17/200>17/314
b: 11/54=22/108<22/37
c: 141/893=3/19
159/901=3/17
mà 3/19<3/17
nên 141/893<159/901
d, Vì B=10^1993+1/10^1992+1 > 1 =>10^1993+1/10^1992+1>10^1993+1+9/10^1992+1+9 = 10^1993+10/10^1992+10= 10. (10^1992+1)/10. (10^1991+1) = 10^1992+1/10^1991+1=A Vậy A=B
cau d B>1 ta co tinh chat (\(\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ) B> \(\dfrac{10^{1993}+1+9}{10^{1992}+1+9}\)\(=\dfrac{10^{1993}+10}{10^{1992}+10}\)=\(\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1992}+1}{10^{1991}+1}\)=A
Suy ra B>A(chuc ban hoc goi nhe)
Ta có:5/20>5/25
5/21>5/25
5/22>5/25
5/23>5/25
5/24>5/25
=>S=5/20+5/21+5/22+5/23+5/24>5/25+5/25+5/25+5/25+5/25=1
=>5/20+5/21+5/22+5/23+5/24>1
DỄ
DO: 5/20 <1
5/21<1
5/22<1
5/23<1
5/24<1
=> 5/20+5/21+5/22+5/23+5/24<1
hay S<1 ( ĐPCM)
ĐÚNG NÈ ỦNG HỘ
Vì 18/91 < 18/90 =1/5
23/114>23115=1/5
vậy 18/91<1/5<23/114
suy ra 18/91<23/114
vì 21/52=210/520
Mà 210/520=1-310/520
213/523=1-310/523
310/520>310/523
vậy 210/520<213/523
suy ra 21/52<213/523
a: 7/30=21/90
8/45=16/90
11/90=11/90
b: -4/5=-168/210
1/6=35/210
-9/7=-270/210
c: -7/24=-21/72
11/12=66/72
-23/36=-46/72
d: 17/30=85/150
-22/75=-44/150
5=750/150
Ta có:\(\dfrac{1}{20}>\dfrac{1}{21}>\dfrac{1}{22}>\dfrac{1}{23}>\dfrac{1}{24}>\dfrac{1}{25}\)
=>S=\(\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}=5\left(\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+\dfrac{1}{24}\right)>5\cdot\left(\dfrac{1}{25}+\dfrac{1}{25}+\dfrac{1}{25}+\dfrac{1}{25}+\dfrac{1}{25}\right)\)
=>S>\(5\cdot\dfrac{5}{25}\)
=>S>1(đpcm)
\(\dfrac{-22}{121}=\dfrac{-22:11}{121:11}=\dfrac{-2}{11}\)
\(\dfrac{4}{-22}=\dfrac{4:2}{-22:2}=\dfrac{2}{-11}=\dfrac{-2}{11}\)
\(-\dfrac{10}{55}=-\dfrac{10:5}{55:5}=-\dfrac{2}{11}=\dfrac{-2}{11}\)
Vậy ...
\(\dfrac{-2}{11}\)