Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{-3}{8}\times\left(0,5-1\dfrac{3}{5}\right)\)
\(\Rightarrow\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{-3}{8}\times\left(\dfrac{1}{2}-\dfrac{8}{5}\right)\)
\(\Rightarrow\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{-3}{8}\times\dfrac{11}{10}\)
\(\Rightarrow\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{33}{80}\)
\(\Rightarrow x:2,2=\dfrac{33}{80}:\dfrac{1}{6}\)
\(\Rightarrow x:2,2=\dfrac{99}{40}\)
\(\Rightarrow x=\dfrac{99}{40}\times2,2\)
\(\Rightarrow x=\dfrac{1089}{200}\)
=>(x:2,2)*1/6=-3/8(1/2-8/5)=33/80
=>x:2,2=99/40
=>x=1089/200
Chọn B. Thay \(\dfrac{1}{3}\)vào x và \(\dfrac{1}{2}\)vào y
giải để ra được m
\(\dfrac{2}{x}\) + \(\dfrac{1}{y}\) = \(\dfrac{1}{6}\) (\(x;y\) \(\in\) N*)
\(\dfrac{2}{x}\) = \(\dfrac{1}{6}\) - \(\dfrac{1}{y}\)
\(\dfrac{2}{x}\) = \(\dfrac{y-6}{6y}\)
\(x\) = 2: \(\dfrac{y-6}{6y}\)
\(x\) = \(\dfrac{12y}{y-6}\)
Vì \(x\); y \(\in\) N* nên 12\(y\) ⋮ y - 6 ( và y > 6)
12y ⋮ y - 6 ⇔ 12y - 72 + 72 ⋮ y - 6 ⇔ 12.(y-6) + 72 ⋮ y - 6 ⇔ 72⋮ y - 6 72 = 23.32
Ư(72) = { 1; 2; 3; 4; 6; 8; 9; 12; 18; 24; 36; 72}
Lập bảng ta có:
\(y-6\) | 1 | 2 | 3 | 4 | 6 | 8 | 9 | 12 | 18 | 24 | 36 | 72 |
y | 7 | 8 | 9 | 10 | 12 | 14 | 15 | 18 | 24 | 30 | 42 | 78 |
\(x\)=\(\dfrac{12y}{y-6}\) | 84 | 48 | 36 | 30 | 34 | 21 | 20 | 18 | 16 | 15 | 14 | 13 |
Theo bảng trên ta có các cặp số tự nhên \(x\); y thỏa mãn đề bài lần lượt là:
(\(x\);y) =(84;7); (48;8); (36;9); (30;10);(34;12); (21;14); (20;15);(18;18);
(16;24); (15; 30); (14;42);(13;78)
\(\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\left(x;y\inℕ^∗\right)\)
\(\Leftrightarrow\dfrac{2y+x}{xy}=\dfrac{1}{6}\)
\(\Leftrightarrow6\left(2y+x\right)=xy\)
\(\Leftrightarrow12y+6x=xy\)
\(\Leftrightarrow12y-xy+6x=0\)
\(\Leftrightarrow y\left(12-x\right)+6x-72+72=0\)
\(\Leftrightarrow-y\left(x-12\right)+6\left(x-12\right)=-72\)
\(\Leftrightarrow\left(x-12\right)\left(6-y\right)=-72\)
\(\Leftrightarrow\left(x-12\right);\left(6-y\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-8;8;-9;9;-18;18;-24;24;-36;36;-72;72\right\}\)
Lập bảng sẽ ra \(\left(x;y\inℕ^∗\right)\) cần tìm...
\(=\dfrac{5}{21}+\dfrac{16}{21}-\left(\dfrac{19}{23}+\dfrac{4}{23}\right)+\dfrac{1}{2}=\dfrac{1}{2}\)
\(\dfrac{\dfrac{4}{5}:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\left(\dfrac{27}{25}-\dfrac{2}{25}\right):\dfrac{4}{7}}{\left(\dfrac{59}{9}-\dfrac{13}{4}\right)\cdot\dfrac{36}{17}}+\left(\dfrac{6}{5}\cdot\dfrac{1}{2}\right):\dfrac{4}{5}\)
\(=\dfrac{4}{5}:\dfrac{3}{5}+\dfrac{7}{4}:7+\dfrac{3}{5}:\dfrac{4}{5}\)
\(=\dfrac{4}{3}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\dfrac{7}{3}\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
h) x/y = 9/10 ⇒ y/10 = x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
y/10 = x/9 = (y - x)/(10 - 9) = 120/1 = 120
*) x/9 = 120 ⇒ x = 120.9 = 1080
*) y/10 = 120 ⇒ y = 120.10 = 1200
Vậy x = 1080; y = 1200
k) x/y = 3/4
⇒ x/3 = y/4
⇒ 5y/20 = 3x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
5y/20 = 3x/9 = (5y - 3x)/(20 - 9) = 33/11 = 3
*) 3x/9 = 3 ⇒ x = 3.9:3 = 9
*) 5y/20 = 3 ⇒ y = 3.20:5 = 12
Vậy x = 9; y = 12
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2};\dfrac{1}{3^2}< \dfrac{1}{2\cdot3};...;\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\\ \Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \RightarrowĐpcm\)
Ta có:
\(-\left(-\dfrac{1}{6}\right)^{100}=-\left(\dfrac{1}{6}\right)^{100}=-\left[\left(\dfrac{1}{6}\right)^2\right]^{50}=-\left(\dfrac{1}{36}\right)^{50}\)
\(-\left(-\dfrac{1}{8}\right)^{150}=-\left(\dfrac{1}{8}\right)^{150}=-\left[\left(\dfrac{1}{8}\right)^3\right]^{50}=-\left(\dfrac{1}{512}\right)^{50}\)
Mà: \(\dfrac{1}{36}>\dfrac{1}{512}\)
\(\Rightarrow\left(\dfrac{1}{36}\right)^{50}>\left(\dfrac{1}{512}\right)^{50}\)
\(\Rightarrow-\left(\dfrac{1}{36}\right)^{50}< -\left(\dfrac{1}{512}\right)^{50}\)
\(\Rightarrow-\left(\dfrac{-1}{6}\right)^{100}< -\left(\dfrac{-1}{8}\right)^{150}\)