\(\in\)Z sao cho:

\(\frac{x}{2}\)=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

\(\Leftrightarrow\frac{x}{2}-\frac{1}{3}=-\frac{1}{y}\)

\(\Leftrightarrow\frac{3x-2}{6}=-\frac{1}{y}\)

\(\Leftrightarrow y\left(3x-2\right)=-6\)

Xét ước của -6 ta có: \(Ư\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Tự xét ước nhé bạn

7 tháng 5 2019

\(\frac{x}{2}\div\frac{1}{2}=\frac{1}{y}\)

\(\Leftrightarrow\frac{x}{2}\times\frac{2}{1}=\frac{1}{y}\)

\(\Leftrightarrow x=\frac{1}{y}\)

7 tháng 5 2019

x/2.2=1/y

2x/2=1/y 

x=1/y 

suy ra xy=1

vi x thuoc Z va y khac 0 

suy ra x=-1;y=-1

hoac x=y=1

KL

15 tháng 8 2017

Cậu có chắc của lớp 6 không ???

Áp dụng Bất đẳng thức Cauchy-Schwarz dạng Engel , có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{6}=\frac{3}{2}\) 

Đẳng thức xảy ra : \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{2}\)

24 tháng 4 2019

Xét \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)=3+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)

Với \(x,y,z\inℕ^∗\)áp dụng bất đẳng thức Cô si  \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\),\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\),\(\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge3+2+2+2=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(x+y+z=6theogt\right)\)

10 tháng 4 2017

\(\frac{-2}{x}=\frac{y}{3}\)

=> x.y=-6

=> Ta có các bộ (x,y) là (-1;6),(1;-6),(-2;3),(2;-3),(6;-1),(-6;1),(3;-2),(-3;2)

\(\frac{13}{x}=\frac{y}{1}\)

=>x.y=13

Ta có các bộ số (x,y) là (-1;-13);(1;13);(-13;-1),(13;1)

28 tháng 6 2017

Bài 1:
a)\(\frac{x}{5}=\frac{-3}{y}\Rightarrow xy=-15\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 15) (1; -15) (-3; 5) (3; -5)
b)\(\frac{-11}{x}=\frac{y}{3}\Rightarrow xy=-33\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 33) (1; -33) (3; -11) (-3; 11)

Bài 2: Ở đây mình vẫn chưa hiểu về cặp số nguyên
a) Để M là số nguyên thì x + 2 chia hết cho 3. Vậy ta có các số: x \(\in\){...; -5; -2; 1; 4; 7; 10; ...}
b) Để N là số nguyên thì 7 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{2;0;8;-6\right\}\)
Vậy \(x\in\left\{2;0;8;-6\right\}\)
c) Để D là số nguyên thì x + 1 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1). Đặt tính chia (bạn tự đặt do mình không cách đặt tính chia trên olm) ta có:
(x + 1) : (x - 1) = 1 (dư 2)
Để D là số nguyên thì 2 chia hết cho x - 1\(\Rightarrow x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{2;0;3;-1\right\}\)
Vậy \(x\in\left\{2;0;3;-1\right\}\)

6 tháng 4 2020

\(\frac{x}{7}+\frac{1}{14}=\frac{1}{y}\)

6 tháng 4 2020

\(\frac{x}{7}+\frac{1}{14}=\frac{1}{y}\)

\(\frac{x\times2}{14}+\frac{1}{14}=\frac{1}{y}\)

\(\frac{2x+1}{14}=\frac{1}{y}\)

\(\Rightarrow\left(2x+1\right).y=14\)

Ta có: 14=7.2=-7.(-2)

mà 2x+1 là số lẻ

\(\Rightarrow\orbr{\begin{cases}2x+1=7\\y=2\end{cases}}\)

\(\orbr{\begin{cases}2x+1=-7\\y=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x=6\\y=2\end{cases}}\)

\(\orbr{\begin{cases}2x=-8\\y=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\y=2\end{cases}}\)

\(\orbr{\begin{cases}x=-4\\y=-2\end{cases}}\)

12 tháng 8 2016

ta có : 1/y = x/4 - 1/2 = ( x+2)/4 <=> y = 4/(x - 2)

Để x, y nguyên nên ta có : x-2 ϵ Ư(4) = { -1 , 1 ,-2,2-4,4}

x-2=1=>x=3=>y=4

x-2=-1=>x=1=>y=-4

x-2=-2=>x=0=>y=0

x-2=2=>x=4=>y=2

x-2=-4=>x=-2=>y=-1

x-2=4=>x=6=>y=1

vay cac cap so nguyen( x,y) la :(3,4),(1,-4),(0,0),(4,2),(-2,-1),(6,1)

x4

 

12

1 

 

11 tháng 8 2020

khó quá

11 tháng 8 2020

a. Vì \(\left|x-y-5\right|\ge0\forall x;y;2019\left|y-3\right|^{2020}\ge0\forall y\)

\(\Rightarrow\left|x-y-5\right|+2019\left|y-3\right|^{2020}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|x-y-5\right|=0\\2019\left|y-3\right|^{2020}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y-5=0\\y-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=5\\y=3\end{cases}}\)

b. \(2\left(x-5\right)^4\ge0\forall x;5\left|2y-7\right|^5\ge0\forall y\)

\(\Rightarrow2\left(x-5\right)^4+5\left|2y-7\right|^5\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}2\left(x-5\right)^4=0\\5\left|2y-7\right|^5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-5=0\\2y-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\y=\frac{7}{2}\end{cases}}\)