\(\Delta ABC\)có 3 góc nhọn. Trên nửa mặt phẳng bờ \(AB\)khôn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

A B C E F x y M I K

a) Gọi I là trung điểm của AB,

K là trung điểm của AC.

Ta có:

 \(IA=IE=MK=\frac{1}{2}AB\)

\(KF=KA=IM=\frac{1}{2}AC\)

TA CÓ TAM GIÁC IAE VÀ AKF LẦN LƯỢT CÂN TẠI I VÀ K

\(\Rightarrow\widehat{EIB}=2\widehat{xAB}=42^o;\widehat{CKF}=2\widehat{CAY}=42^o\)

\(\Rightarrow\widehat{EIB}=\widehat{CKF}\)

MI//AC

=> BIM=BAC ( đồng vị) (1)

M//AB

=> MKC=BAC (đồng vị)(2)

từ (1) và (2)

\(\Rightarrow\widehat{BIM}=\widehat{MKC}\)

TỪ ĐÂY TA CÓ THỂ DỄ DÀNG CÓ EIM=MKF

=> \(\Delta EIM\)\(\Delta MKF\)

=> ME = MF

=> TAM GIÁC MEF cân tại M

17 tháng 11 2016

ko biết

 

4 tháng 12 2018

cho mk sửa xíu"câu c) á,trên nửa... nha chứ bên trên là mk viết sai á"!xl mí bn nha!

4 tháng 12 2018

Hình bạn tự vẽ

a) Xét tam giác BMA và tam giác CMD , có:

              BM=MC ( vì M là trung điểm của BC)

              góc BMA = góc CMD( 2 góc đối đỉnh)

               AM=MB ( giả thiết )

=> Tam giác BMA = tam giác CMD ( c-g-c )

=> góc BAM = góc CDM ( 2 góc tương ứng )(đpcm)

b) Xét tam giác BMD và tam giác CMA , có:

             BM=MC ( vì M là trung điểm của BC)

             góc BMD = góc CMA( 2 góc đối đỉnh)

             AM=MB ( giả thiết )

=> Tam giác BMD = tam giác CMA ( c-g-c )

=> BD = AC ( 2 cạnh tương ứng ) ( đpcm )

=> góc BDM = góc MAC ( 2 góc tương ứng )

Mà góc BMD và góc MAC ở vị trí sole trong

=> AC // BD ( dấu hiệu nhận biết 2 đường thẳng song song) ( đpcm )

Còn lại dễ bạn tự làm nha mỏi tay quá

5 tháng 1 2017

Trên tia AM lấy điểm A’ sao cho AM = MA’

Dễ chứng minh được ∆AMC = ∆A’MB ( g.c.g)

A’B = AC ( = AE) và góc MAC = góc MA’B

AC // A’B => góc BAC + góc ABA’ = 180 0 (cặp góc trong cùng phía)

Mà góc DAE + góc BAC = 180 0 => góc DAE = góc ABA’

Xét ∆DAE và ∆ABA’ có : AE = A’B , AD = AB (gt)

góc DAE = góc ABA’ ∆DAE = ∆ABA’(c.g.c)

góc ADE = góc BAA’ mà góc HAD + góc BAA’ = 90 0

=> góc MAD + góc ADE = 90 0 . Suy ra MA vuông góc với DE

5 tháng 1 2017

bạn ơi nhầm bài rùi bạn ạ

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)d)Hãy...
Đọc tiếp

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)

a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)

b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.

c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)

d)Hãy cho biết khẳng định\("\)nếu \(\widehat{BAC}=\frac{\widehat{AMC}+\widehat{BMC}+\widehat{AMB}}{6}\)thì điểm \(M\)cách đều các cạnh của \(\Delta ABC\)\("\)có đúng không?Vì sao?

e)Trên một nửa mặt phẳng có chứa điểm \(C\) bờ \(AB,\)vẽ  tam giác đều \(ABF.\)Giả sử rằng \(\widehat{BAC}=\widehat{ACB}+\widehat{ABC}\)và \(AB=\frac{1}{2}BC,\)chứng minh \(F\)là trung điểm của \(BC.\)

3
26 tháng 5 2017

bài này khó nhất là hai câu a và c.

26 tháng 5 2017

a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )

Gọi giao điểm của AB và CD là K

Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)

\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)

\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)

Gọi J là trung điểm DM

C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)

rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)