Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kí hiệu tam giác viết là t/g nhé
a) BI là phân giác ABC nên ABI = CBI
Xét t/g BID vuông tại D và t/g BIF vuông tại F có:
BI là cạnh chung
DBI = FBI (cmt)
Do đó, t/g BID = t/g BIF ( cạnh góc vuông và góc nhọn kề) (đpcm)
b) t/g BID = t/g BIF (câu a) => ID = IF (2 cạnh tương ứng) (1)
C/m tương tự câu a ta cũng có: t/g ADI = t/g AEI ( cạnh góc vuông và góc nhọn kề)
=> ID = IE (2 cạnh tương ứng)
Từ (1) và (2) => ID = IE = IF (đpcm)
ban tu ve hinh nhe
a) Xet tam giac BID va tam giac BIF co:
BI:canh chung
goc DBI=goc IBF(vi tia BI la tia phan giac cua goc DBF)
goc BDI=goc BFI(=90do)
Vay tam giac BID=tam giac BIF(canh huyen, goc nhon)
b) Vi tam giac BID=tam giac BIF(cau a)
Nen ID=IF(2 canh tuong ung) (1)
Xet tam giac AID va tam giac AIE co:
AI:canh chung
goc DAI=goc EAI(vi tia AI la tia phan giac cua goc DAE)
goc ADI=goc AEI(=90do)
Nen tam giac AID=tam giac AIE(canh huyen,goc nhon)
Suy ra:ID=IE(2 canh ung) (2)
Tu (1), (2)\(\Rightarrow\) IF=ID=IE
Chuc ban ngay cang hoc gioi len nhe
Hen gap lai ban vao dip khac nhe
A B C H D E
a) Xét \(\Delta ABC\) có :
AB = AC (gt)
=> \(\Delta ABC\) cân tại A
\(\Delta ABH,\Delta ACH\) có :
\(\widehat{ABH}=\widehat{ACH}\) (\(\Delta ABC\) cân tại A)
\(AB=AC\left(gt\right)\)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn)
=> \(\left\{{}\begin{matrix}HB=HC\left(\text{2 cạnh tương ứng}\right)\\\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\end{matrix}\right.\)
b) Ta có : \(H\in BC\left(gt\right)\Rightarrow HB=HB=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)
Xét \(\Delta ABH\) vuông tại H (\(AH\perp BC\)) có :
\(AH^2=AB^2-BH^2\) (Định lí PITAGO)
=> \(AH^2=5^2-4^2=9\)
=> \(AH=\sqrt{9}=3\left(cm\right)\)
c) Xét \(\Delta DBH,\Delta ECH\) có :
\(\widehat{DBH}=\widehat{ECH}\) (\(\Delta ABC\) cân tại A)
\(BH=CH\)(cm câu a)
\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)
=> \(\Delta DBH=\Delta ECH\) (cạnh huyền -góc nhọn)
=> \(HD=HC\) (2 cạnh tương ứng)
=> \(\Delta HDE\) cân tại H.
a) Vì góc BHC = góc KMH = 90 độ
=> MK // AC
Nên góc C = góc KMB, mà góc C = góc B => góc B= góc KMB
Xét :ΔBKM và ΔMDB ta có
+ góc DBM=góc KMB ( vừa chứng minh )
+ BM là cạnh chung
=> ΔBKM=ΔMDB ( ch-gn )
b) Vì góc KHE= góc MEH = 90 độ
=> ME//BH
nên góc KHM= góc EMH (cặp góc so le trong)
Xét: ΔKHM và ΔEHM ta có
+ góc KHM = góc EMH ( vừa chứng minh )
+ MH là cạnh chung
=> ΔKHM=ΔEHM (ch-gn )
c) vì ΔBKM=ΔMDB => DM=BK
ΔKHM=ΔEHM => KH=ME
ta có DM + ME = BK + KH
=> DM + ME = BH
chúc bạn học tốt. nhớ tick cho mk nha
A B C I F E
a) Xét \(\Delta ABI,\Delta ACI\) có :
\(AB=AC\) (ΔABC cân tại A)
\(\widehat{AIB}=\widehat{AIC}\left(=90^o\right)\)
\(\widehat{ABI}=\widehat{ACI}\) (ΔABC cân tại A)
=> \(\Delta ABI=\Delta ACI\) (cạnh huyền - góc nhọn)
=> BI = CI (2 cạnh tương ứng)
=> I là trung điểm của BC.
b) Xét \(\Delta AEI,\Delta AFI\) có :
\(AE=AF\left(gt\right)\)
\(\widehat{EAI}=\widehat{FAI}\) (do \(\Delta ABI=\Delta ACI\) - cm câu a)
\(AI:Chung\)
=> \(\Delta AEI=\Delta AFI\left(c.g.c\right)\)
=> \(IE=IF\) (2 cạnh tương ứng)
=> ΔIEF cân tại I.
c) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(\text{(ΔABC cân tại A)}\right)\\AE=AF\left(gt\right)\end{matrix}\right.\)
Lại có : \(\left\{{}\begin{matrix}E\in AB\\F\in AC\end{matrix}\right.\left(gt\right)\Rightarrow\left\{{}\begin{matrix}AB=AE+BE\\AC=AF+FC\end{matrix}\right.\)
Nên : \(AB-AE=AC-AF\)
\(\Leftrightarrow BE=CF\)
Xét \(\Delta EBI,\Delta FCI\) có :
\(BE=CF\left(cmt\right)\)
\(BI=CI\) (I là trung điểm của BC)
\(IE=IF\) (tam giác IEF cân tại I)
=> \(\Delta EBI=\Delta FCI\left(c.c.c\right)\)
=> đpcm.
A B C H K P M
a) xét △ABM và △ ACM có
AB=AC ( △ABC cân tại A)
\(\widehat{B}=\widehat{C}\)( △ABC cân tại A)
BM=MC (gt)
=> △ABM = △ ACM (c.g.c)(đpcm)
b) xét △HBM và △ HCM có
\(\widehat{H}=\widehat{K}\left(=90^0\right)\)
BM=MC
\(\widehat{B}=\widehat{C}\) ( △ABC cân tại A)
=> △HBM = △ HCM (ch-gn)
=> HB=HC (2 cạnh tương ứng ) (đpcm)
c) +vì △HBM = △ HCM ( theo b)
=> \(\widehat{HMB}=\widehat{KMC}\)(2 góc tương ứng )
VÌ + BP ⊥ AC (gt)
+ MK ⊥ AC (gt)
=> BP // MK (qh từ vuông góc đến // )
=> \(\widehat{BIM}=\widehat{KIM}\) (slt)
ta có
\(\widehat{BIM}+\widehat{HMB}+\widehat{IBM}=180^0\)(đl tổng 3 góc trong △)
\(\widehat{HMB}+\widehat{IMK}+\widehat{KMC}=180^0\)(kề bù )
MÀ \(\widehat{HMB}\) chung
\(\widehat{BIM}=\widehat{IMK}\left(cmt\right)\)
=> \(\widehat{IBM}=\widehat{KMC}\)
MÀ \(\widehat{KMC}=\widehat{IMB}\) (cmt)
=> \(\widehat{IBM}=\widehat{IMB}\)
=> △ IBM cân tại I (đpcm)
a) Xét ΔANB và ΔANC có
AB=AC(gt)
\(\widehat{BAN}=\widehat{CAN}\)(AN là phân giác của \(\widehat{BAC}\))
AN cạnh chung
Do đó: ΔANB=ΔANC(c-g-c)
b) Xét ΔAND vuông tại D và ΔANE vuông tại E có
AN cạnh chung
\(\widehat{DAN}=\widehat{EAN}\)(AN là phân giác của \(\widehat{BAC}\), D∈AB, E∈AC)
Do đó: ΔAND=ΔANE(cạnh huyền-góc nhọn)
⇒AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(định nghĩa tam giác cân)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
tự vẽ hình nha
a)Xét tam giác vuông IMA và tam giác vuông IQA có
góc A1=góc A2(AI là tia phân giác góc A)
AI chung
\(\Rightarrow\)\(\Delta IMA=\Delta IQA\left(ch-gn\right)\)
b)\(\Delta IMA=\Delta IQA\left(ch-gn\right)\)
nên IM=IQ