K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2014

Giả sử cả 5 người đều được giải ba thì tổng điểm là:

    13 x 5 = 65 điểm

Như vậy so với điểm thực tế họ đạt được (69 đ) thì còn thiếu 4 điểm. 

Cứ thay 1 giải ba bằng 1 giải nhất thì tổng điểm tăng lên 2;

Cứ thay 1 giải ba bằng 1 giải nhì thì tổng điểm tăng lên 1.

Ta có các trường hợp sau (đều tăng lên 4 đ):

TH1: 4 = 2.2 (tức là 2 bạn đạt giải nhất, 3 bạn còn lại vẫn giữ giải ba)

TH2: 4 = 1.2 + 2.1 (tức là 1 bạn giải nhất, 2 bạn giải nhì, còn 2 bạn còn lại vẫn giữ giải ba)

TH3: 4 = 4.1 (tức là 4 bạn đạt giải nhì và 1 bạn còn lại vẫn giữ giải ba).

ĐS: Có 3 trường hợp:

      - TH1: 2 giải nhất, 3 giải ba

      - TH2: 1 giải nhất, 2 giải nhì, 2 giải ba

      - TH3: 4 giải nhì và 1 giải ba

16 tháng 11 2014

Nếu 5 hs đó đều đặt giải nhì thì tổng điểm là 5x14=70 (điểm)nhiều hơn tổng điểm là 1 điểm suy ra ít nhất có 1 hs đạt 13 điểm

Tổng điểm của 4 hs còn lại là 70-13=57(điểm)

Tb mỗi người còn lại được 57:4=14(điểm)=> có 3 trường hợp

Trường hợp 1:4 bạn còn lại đều đặt 14 điểm và thêm 1 bạn 13 điểm

Trường hợp 2:Trong 4 bạn còn lại 2 bạn đạt 14 điểm 1 bạn đạt 13 điểm 1 bạn đạt 15 điểm và thêm 1 bạn 13 điểm

Trường hợp 3:Trong 4 bạn còn lại 2 bạn đạt 15 điểm 2 bạn đạt 13 điểm và thêm 1 bạn 13 điểm

5 tháng 5 2016

Gọi số học sinh đạt giải cả 3 môn là a (học sinh) 
Gọi số học sinh đạt giải cả 2 môn là b (học sinh) 
Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh) 
Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 (giải). 
Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. 
Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên: 
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán. 
- Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ. 
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ. 
Do vậy b= 3. 
Giả sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là: 
3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1.
Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12. 
Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng). 
Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c) 
Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải. 
Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (bạn).

5 tháng 5 2016

Bài giải:
Gọi số học sinh đạt giải cả 3 môn là a (học sinh) 
Gọi số học sinh đạt giải cả 2 môn là b (học sinh) 
Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh) 
Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 (giải). 
Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. 
Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên: 
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán. 
- Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ. 
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ. 
Do vậy b= 3. 
Giả sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là: 
3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1.
Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12. 
Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng). 
Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c) 
Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải. 
Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (bạn).

Phân số tương ứng với 12 h/s giỏi là :

             \(\frac{3}{5}\)\(-\)\(\frac{1}{3}\)  =    \(\frac{4}{15}\)   ( h/s dự thi )

Số h/s dự thi là :

              \(12\):    \(\frac{4}{15}\)  =    45   ( em )

Đ/s:..

12 học sinh giỏi chiếm:

     3/5 - 1/3 = 4/15 (h/s dự thi )

Khối 5 có số học sinh dự thi là :

      12 : 4/15 = 45 (em)

                    Đáp số :45 em .

3 tháng 12 2016

9 học sinh chiếm :

2/5 - 1/4 = 3/20 ( số học sinh dự thi )

Trường Tiểu học Kim Đồng có số em dự thi là :

9 : 3/20 = 60 ( em )

Đáp số : 60 em 

22 tháng 1 2017

9 học sinh chiếm số học sinh dự thi là :

2/5:1/4=3/20( số học sinh)

trường tiểu học kim đồng có số em dự thi là:

9:3/20=60(em)

D/S:60 em học sinh

6 tháng 3 2018

10 học sinh nha bạn !

12 tháng 7 2019

Gọi số học sinh đạt giải cả 3 môn là a (học sinh) 

Gọi số học sinh đạt giải cả 2 môn là b (học sinh) 

Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh) 

Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 (giải). 

Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. 

Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên: 

- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán. 

- Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ. 

- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ. 

Do vậy b= 3. 

Giả sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là: 

3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1.

Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12. 

Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng). 

Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c) 

Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải. 

Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (bạn).

28 tháng 12 2017

Đặt số học sinh đạt giải cả 3 môn, 2 môn, 1 môn lần lượt là a, b, c (học sinh) Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 (giải). Tổng số hs đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. Vì bất kỳ 2 môn nào cũng có ít nhất 1 hs đạt giải cả 2 môn nên: - Có ít nhất 1 hs đạt giải cả 2 môn V và T. - Có ít nhất 1 hs đạt giải cả 2 môn T và NN. - Có ít nhất 1 hs đạt giải cả 2 môn V và NN. Do đó b bằng hoặc lớn hơn 3. Nếu a = 2 thì b bé nhất là 3, c bé nhất là 4, do đó tổng số giải bé nhất là: 3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Vì vậy a < 2, nên a = 1. Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12. Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng). Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại do điều kiện b < c) Vậy có 1 học sinh đạt 3 giải, 3 học sinh đạt 2 giải, 6 học sinh đạt 1 giải. Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (học sinh).

29 tháng 11 2019

Đặt số học sinh đạt giải cả 3 môn, 2 môn, 1 môn lần lượt là a, b, c (học sinh)
Tổng số giải đạt được là:

3 x a + 2 x b + c = 15 (giải). 
Tổng số hs đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. 
Vì bất kỳ 2 môn nào cũng có ít nhất 1 hs đạt giải cả 2 môn nên:
- Có ít nhất 1 hs đạt giải cả 2 môn V và T.
- Có ít nhất 1 hs đạt giải cả 2 môn T và NN. 
- Có ít nhất 1 hs đạt giải cả 2 môn V và NN. 
Do đó b bằng hoặc lớn hơn 3. 
Nếu a = 2 thì b bé nhất là 3, c bé nhất là 4, do đó tổng số giải bé nhất là: 
3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). 
Vì vậy a < 2, nên a = 1. 
Ta có: 3 x 1 + 2 x b + c = 15 
suy ra: 2 x b + c = 12. 
Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng). 
Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại do điều kiện b < c) 
Vậy có 1 học sinh đạt 3 giải, 3 học sinh đạt 2 giải, 6 học sinh đạt 1 giải. 
Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (học sinh).

3 tháng 12 2016

Phân số chỉ 9 học sinh :

2/5 - 1/4 = 3/20

Trường Kim Động có số học sinh dự thi :

9 : 3 x 20 = 60 học sinh