Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: M1^ + M2^ = 180o hay M1^ + 90o = 180o
=> M1^ = 180o - 90o = 90o
=> M1^ = M2^ = 90o
Xét ΔKAM và ΔKBM có:
KM Cạnh chung
M1^ = M2^ = 90o (cmt)
AM = BM (gt)
=> ΔKAM = ΔKBM (c.g.c)
=> K1^ = K2^ (2 góc tương ứng)
=> KM là tia phân giác của AKB^ (ĐPCM)
C A B M
Bài làm
Xét tam giác CAM và tam giác ABM có:
AM = MB ( Do M là trung điểm AB )
/ CMA = / CMB ( cùng = 90o )
CM chung
=> Tam giác CAM = tam giác ABM ( c.g.c )
=> CA = CB ( hai cạnh tương ứng )
=> Tam giác CAB cân tại C
Vì tam giác CAM = tam giác ABM ( cmt )
=> / ACM = / BCM ( hai góc tương ứng )
=> CM là tia phân giác của góc ACB ( đpcm )

Ta có hình vẽ :
A B K M
Xét 2 tam giác KAM và KBM ta có :
AM = BM
KM chung
AMK = BMK = 90 độ
\(\Rightarrow\)Tam giác AMK = Tam giác BMK
\(\Rightarrow\)AKM = BKM
\(\Rightarrow\)KM là phân giác của góc AKB .

Câu a: Chứng minh tam giác ABH = tam giác ACH
Ta có tam giác ABC cân tại A, tức là ( AB = AC ).
Điểm ( H ) là trung điểm của đoạn ( BC ), nên ( BH = HC ).
Xét hai tam giác ( ABH ) và ( ACH ):
- ( AB = AC ) (giả thiết tam giác ABC cân tại A).
- ( BH = HC ) (do ( H ) là trung điểm của ( BC )).
- ( \angle ABH = \angle ACH ) (đối đỉnh).
Vậy theo cạnh - góc - cạnh (c.g.c), ta có:
[ \triangle ABH = \triangle ACH ]
Câu b: Chứng minh ( \angle ABM = \angle ACM ) và tam giác MBC cân
- Vì ( M ) nằm trên tia phân giác của góc ( ABC ), ta có: [ \angle ABM = \angle CBM ]
- Mặt khác, do tam giác ( ABH ) và ( ACH ) bằng nhau (chứng minh ở câu a), nên: [ \angle CBM = \angle ACM ] Suy ra:
[ \angle ABM = \angle ACM ] - Xét tam giác ( MBC ):
- ( \angle CBM = \angle BCM ) (do ( M ) nằm trên tia phân giác của ( \angle ABC )).
- ( MB = MC ) (cạnh đối diện hai góc bằng nhau).
Vậy tam giác ( MBC ) cân tại ( M ).
Câu c: Chứng minh ( AB = AN )
- Do đường thẳng đi qua ( A ) song song với ( BC ) cắt tia ( BM ) tại ( N ), ta có:
[ AN \parallel BC ] - Xét tam giác ( ABN ), có ( AN \parallel BC ) nên theo định lý đường trung bình của tam giác, ta có:
[ AB = AN ]
Câu d: Chứng minh ( MC \perp CN )
- Từ câu b, tam giác ( MBC ) cân tại ( M ) nên ( MC = MB ).
- Do ( AN \parallel BC ), nên góc ( MCN ) bằng góc ( NBC ).
- Mà ( \angle NBC = 90^\circ ) (do đường thẳng ( AN ) song song với ( BC )).
- Vậy suy ra ( MC \perp CN ).

Nè bạn, tam giác ABC có vuông ko vậy
Nếu vuông thì mình mới làm được nhé.
Nhớ kết bạn với mình đó nha!

a) áp dụng định lí py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
=> 225 = 81 + 144 = 225
=> tam giác ABC là tam giác vuông
trong tam giác vuông ABC có \(\widehat{A}\)> \(\widehat{B}\)>\(\widehat{C}\)(15cm>12cm > 9cm) vì góc đối diện vs cạnh lớn hơn là góc lớn hơn
vậy \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)
b) xem lại đề bài
9cm A B C 12cm 15cm D
xét tg CAM và tg CBM có : CM chung ;\(\widehat{CMA}=\widehat{CMB}=90^0\) ;AM=BM =>tg CMA=tg CMB
=>\(\widehat{CAM}=\widehat{CBM}=>tgCABcân\)
góc AMC =góc BMC ( 2 góc tương ứng ) => CM là tia pg