Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6 giờ =360 phút
4.5 giờ = 270 phút
3 giờ 36 phút=216 phút
cả ba cùng làm thì hết số thời gian là: (360+270+216)/2=423(phút)
Đ/S: 423 phút
Gọi x, y, z (h) lần lượt là A, B, C làm một mình để xong công việc.
Nếu A và B cùng làm thì hết 6 giờ => 6/x + 6/y =1
Nếu B và C cùng làm thì hết 4,5 giờ => 4,5/y +4,5/z =1
Nếu A và C làm thì chỉ hết 3 giờ 36 phút = 3,6h => 3,6/x + 3,6/z = 1
=> 1/x = 1/9 ; 1/y=1/18; 1/z=1/6
=> x=9 ; y=18; z=6
Nếu A, B, C cùng làm thì mất a (h) để hoàn thành công việc.
=> a(1/x + 1/y + 1/z) = 1 => 1/x + 1/y + 1/z = 1/a
=> 1/a = 1/9 +1/18 + 1/6 = 1/3 => a = 3 giờ
Vậy: Nếu A, B, C cùng làm thì mất 3h để hoàn thành công việc.
Gọi thời gian người thứ nhất làm riêng để xong nửa công việc là x; thời gian người thứ hai làm riêng để xong nửa công việc là y (giờ; x, y > 0)
Nếu làm riêng, mỗi người nửa việc thì tổng thời gian 2 người làm là 12,5 giờ nên ta có phương trình: x + y = 12,5 (1)
Thời gian người thứ nhất làm riêng để xong cả công việc là 2x, của người thứ 2 là 2y. Mà 2 người cùng làm thì trong 6 giờ xong việc nên ta có phương trình:
Vậy nếu làm riêng thì một người làm trong 2.7,5 = 15 giờ, còn người kia làm trong 2.5 = 10 giờ
Đáp án: D
Gọi a(ngày) và b(ngày) lần lượt là thời gian mỗi đội công nhân hoàn thành công việc khi làm riêng(Điều kiện: a>6; b>6)
Trong 1 ngày, đội 1 làm được: \(\dfrac{1}{a}\)(công việc)
Trong 1 ngày, đội 2 làm được: \(\dfrac{1}{b}\)(công việc)
Trong 1 ngày, hai đội làm được: \(\dfrac{1}{6}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{6}\)(1)
Vì khi đội 1 làm 3 ngày và đội 2 làm 7 ngày thì chỉ làm được 2/3 công việc nên ta có phương trình:
\(\dfrac{3}{a}+\dfrac{7}{b}=\dfrac{2}{3}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{6}\\\dfrac{3}{a}+\dfrac{7}{b}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{a}+\dfrac{3}{b}=\dfrac{1}{2}\\\dfrac{3}{a}+\dfrac{7}{b}=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-4}{b}=-\dfrac{1}{6}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=24\\\dfrac{1}{a}=\dfrac{1}{6}-\dfrac{1}{24}=\dfrac{1}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=24\end{matrix}\right.\)(thỏa ĐK)
Vậy: Khi làm riêng thì đội 1 cần 8 ngày để hoàn thành công việc
Khi làm riêng thì đội 2 cần 24 ngày để hoàn thành công việc
Gọi thời gian đội 1 làm một mình xong công việc là x (x>6)
Gọi thời gian đội 2 làm một mình xong công việc là y (y>6)
Trong 1 ngày:
-Đội 1 làm một mình được: \(\dfrac{1}{x}\) công việc
-Đội 2 làm một mình được: \(\dfrac{1}{y}\) công việc
-Cả 2 đội làm được : \(\dfrac{1}{6}\) công việc
Ta có PT: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\) (1)
-Nếu đội 1 làm 3 ngày và đội 2 làm 7 ngày thì chỉ được 2/3 công việc nên ta có PT: \(\dfrac{3}{x}+\dfrac{7}{y}=\dfrac{2}{3}\) (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{3}{x}+\dfrac{7}{y}=\dfrac{2}{3}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=8\\y=24\end{matrix}\right.\left(TM\right)\)
Vậy đội 1 làm một mình trong 8 giờ thì xong công việc
Vậy đội 2 làm một mình trong 24 giờ thì xong công việc
Gọi thời gian làm riêng của người thứ nhất và thứ hai lần lượt là x,y
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{5}{x}+\dfrac{6}{y}=\dfrac{2}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=\dfrac{5}{4}\\\dfrac{5}{x}+\dfrac{6}{y}=\dfrac{2}{15}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-1}{y}=\dfrac{67}{60}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)
=>Đề sai rồi bạn
Gọi x, y, z (h) lần lượt là A, B, C làm một mình để xong công việc.
Nếu A và B cùng làm thì hết 6 giờ => 6/x + 6/y =1
nếu B và C cùng làm thì hết 4,5 giờ => 4,5/y +4,5/z =1
nếu A và C làm thì chỉ hết 3h36' = 3,6h => 3,6/x + 3,6/z = 1
=> 1/x = 1/9 ; 1/y=1/18; 1/z=1/6
=> x=9 ; y=18; z=6
Nếu A, B, C cùng làm thì mất a (h) để hoàn thành công việc.
=> a(1/x + 1/y + 1/z) = 1 => 1/x + 1/y + 1/z = 1/a
=> 1/a = 1/9 +1/18 + 1/6 = 1/3 => a=3
Vậy Nếu A, B, C cùng làm thì mất 3h để hoàn thành công việc
Nếu mak giải bằng thế mừi bn tham khảo:
Câu hỏi của Đỗ Linh Chi - Toán lớp 9 | Học trực tuyến - H.vn