Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B C D
Bạn cần câu c thì mình làm câu c nha!
Do OD là tia đối của OB nên \(\widehat{BOD}=180^0\)
Khi đó có 2 góc \(\widehat{BOC};\widehat{COD}\) kề bù.
Ta có:\(\widehat{BOC}+\widehat{COD}=180^0\)
\(\Rightarrow\widehat{COD}=180^0-50^0=130^0\)
Bài 1
x x' y y' O ) 1 2 3 4 m n
a
Ta có:
\(\widehat{O_1}=\widehat{O_2}=60^0\left(đ.đ\right)\)
\(\widehat{O_1}+\widehat{O_2}=180^0\Rightarrow\widehat{0_2}=180^0-\widehat{O_1}=180-60^0=120^0\)
\(\widehat{O_2}=\widehat{O_4}=120^0\left(đ.đ\right)\)
b
Ta có:
\(\widehat{x'Oy}=\widehat{y'Ox}\Rightarrow\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\widehat{y'Ox}\Rightarrow\widehat{yOn}=\widehat{xOm}\)
\(\widehat{x'Oy}+\widehat{yOx}=180^0\)
\(\Rightarrow2\cdot\widehat{yOn}+\widehat{yOx}=180^0\)
\(\Rightarrow\widehat{yOn}+\widehat{yOx}+\widehat{xOm}=180^0\)
\(\Rightarrowđpcm\)
Bài 2
A O B C D M
a
Ta có:
\(\widehat{BOD}=\widehat{AOC}=90^0\Rightarrow\widehat{BOC}+\widehat{COD}=\widehat{AOD}+\widehat{COD}\Rightarrow\widehat{BOC}=\widehat{AOD}\)
b
Ta có:
\(\widehat{BOM}=\widehat{BOC}+\widehat{COM}=\widehat{AOD}+\widehat{MOD}=\widehat{MOA}\)
Hiển nhiên OM nằm giữa \(\widehat{AOB}\) nên suy ra đpcm
a) vì OB, OC đều thuộc mp OA mà góc AOC > góc AOB (70 >35) => OB thuộc góc AOC
=> góc AOB + góc BOC = góc AOC => góc BOC = góc AOC - góc AOB = 70-35= 35
vì góc AOB= góc BOC ( 35=35) => OB là phân giác AOC
b) Vì OB' là tia đối của OB => góc BOA + góc AOB' = 180 (độ) (kề bù)
=> góc AOB' = 180- góc BOA =180-35= 145(độ)
Vậy góc kề bù với AOB =145 độ