Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Toán lớp 8
- Khóa học Toán lớp 8
Gửi câu trả lời của bạn
Bài 1
\(a,5x^2-10xy+5y^2\)
\(=5\cdot\left(x^2-2xy+y^2\right)\)
\(=5\cdot\left(x-y\right)^2\)
\(b,x^2-y^2+6y-9\)
\(=x^2-\left(y^2-6y+9\right)\)
\(=x^2-\left(y-3\right)^2\)
\(=\left(x-y+3\right)\cdot\left(x+y-3\right)\)
\(c,3x^4-75x^2y^2\)
\(=3x^2\cdot\left(x^2-25y^2\right)\)
\(=3x^2\cdot\left(x-5y\right)\cdot\left(x+5y\right)\)
\(d,x^4y+xy^4\)
\(=xy\left(x^3+y^3\right)\)
\(=xy\cdot\left(x+y\right)\cdot\left(x^2-xy+y^2\right)\)
\(\text{a)}x^3-6x^2+12x-8\)
\(=x^3-2x^2-4x^2+8x+4x-8\)
\(=\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(4x-8\right)\)
\(=x^2\left(x-2\right)+4x\left(x-2\right)+4\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)\left(x+2\right)^2\)
\(\text{b)}8x^2+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)
Bài 2:
\(\text{a) }x^7+1=\left(x^{\frac{7}{3}}\right)^3+1^3=\left(x^{\frac{7}{3}}+1\right)\left[\left(x^{\frac{7}{3}}\right)^2-x^{\frac{7}{3}}+1\right]=\left(x^{\frac{7}{3}}+1\right)\left(x^{\frac{14}{3}}-x^{\frac{7}{3}}+1\right)\)
\(\text{b) }x^{10}-1=\left(x^5\right)^2-1^2=\left(x^5-1\right)\left(x^5+1\right)\)
Bài 3:
\(\text{a) }69^2-31^2=\left(69-31\right)\left(69+31\right)=38.100=3800\)
\(\text{b) }1023^2-23^2=\left(1023-23\right)\left(1023+23\right)=1000.1046=1046000\)
HIHI, bài này thì bó tay lẫn cả chân
Vì mới học xong lớp 6 hoi.
Học tốt nha, nếu ko ai giải thì thử vào câu hỏi tương tự thử
Nha, học tốt !
#)Giải:
-Không sao mình biết cách làm mà, mình chỉ thử lòng ae thui !
a) x4 + 1
= (x2)2 + 2x2 + 1 - 2x2
= (x2 +1)2 - 2x2
\(=\left(x^2+1\right)^2-\left(\sqrt{2}\right)^2x^2\) \(=\left(x^2+1+\sqrt{2}x\right).\left(x^2+1-\sqrt{2}x\right)\)
a. Giống bạn CÔNG CHÚA ÔRI
b. \(x^4+2\)
\(=\left(x^2\right)^2+2x^2\cdot\sqrt{2}+\left(\sqrt{2}\right)^2-2x^2\cdot\sqrt{2}\)
\(=\left(x^2+\sqrt{2}\right)^2-2x^2\cdot\sqrt{2}\)
\(=\left(x^2+\sqrt{2}\right)^2-\left(\sqrt{2}x\cdot\sqrt[4]{2}\right)^2\)
\(=\left(x^2+\sqrt{2}-\sqrt{2}x\cdot\sqrt[4]{2}\right)\left(x^2+\sqrt{2}+\sqrt{2}x\cdot\sqrt[4]{2}\right)\)
Theo đề ta có:
\(\frac{x^4}{2}-2x^2\)
\(=\frac{x^4-4x^2}{2}\)
\(=\frac{x^2\left(x^2-4\right)}{2}\)
\(=\frac{x^2\left(x-2\right)\left(x+2\right)}{2}\)
\(x\) có 2 trường hợp:
TH1:
\(x=-\frac{\sqrt{-2+4\sqrt{2}}}{2}\)
TH2:
\(x=0\)
Bài 2:
a) \(x^2-y^2+3x-3y=\left(x^2-y^2\right)+\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)
b) \(5x-5y+x^2-2xy+y^2=\left(5x-5y\right)+\left(x^2-2xy+y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)^2=\left(x-y\right)\left(x-y+5\right)\)
c) \(x^2-5x+4=x^2-x-4x+4=\left(x^2-x\right)-\left(4x-4\right)\)
\(=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)
\(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
x4 + 4
= (x2)2 + 4x2+ 4 - 4x2
= (x2+2)2 - (2x)2
\(=\left(x^2+2+2x\right).\left(x^2+2-2x\right)\)