\(6^{2n+1}+5^{n+2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2019

a/ Không chia hết cho 3 mới đung

\(\left\{{}\begin{matrix}6^{2n+1}⋮3\\5^{n+2}⋮̸3\end{matrix}\right.\) \(\Rightarrow6^{2n+1}+5^{n+2}⋮̸3\)

b/

\(2^{100}=2.2^{99}=2.\left(8\right)^{33}\)

\(8\equiv-1\left(mod9\right)\Rightarrow8^{33}\equiv\left(-1\right)^{33}\left(mod9\right)\Rightarrow8^{33}\equiv\left(-1\right)\left(mod9\right)\)

\(\Rightarrow2.8^{33}\equiv-2\left(mod9\right)\Rightarrow2^{100}\) chia 9 dư \(9-2=7\)

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

\(1024\equiv-1\left(mod25\right)\Rightarrow1024^{10}\equiv\left(-1\right)^{10}\left(mod25\right)\Rightarrow1024^{10}\equiv1\left(mod25\right)\)

Vậy \(2^{100}\) chia 25 dư 1

10 tháng 4 2019

ủa sai đề à

23 tháng 6 2015

Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)\(3^n-2^n\)\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

 = \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)\(3^n\times10-2^{n-1}\times10\)

= 10 \(\times\left(3^n+2^{n+1}\right)\)

chia hết cho 10

Bài 2 : 

\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)

\(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)

chia het cho 100

12 tháng 4 2018

ehdhfhdfh

4 tháng 8 2015

nhìn thấy thì chóng mặt

chỉ cần làm 1 trong 8 câu là đủ rồi

6 tháng 7 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(\Rightarrow\left(3^n\cdot3^2+3^n\right)-\left(2^n\cdot2^2+2^n\right)\)

\(\Rightarrow3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(\Rightarrow3^n\cdot10-2^n\cdot5\)

\(\Rightarrow3^n\cdot10-2^{n-1}\cdot\left(2\cdot5\right)\)

\(\Rightarrow10\left(3^n-2^n\right)\) chia hết cho 10

6 tháng 7 2016

b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(\Rightarrow3^n\cdot3^3+3^n\cdot3+2^n\cdot2^3+2^n\cdot2^2\)

\(\Rightarrow3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(\Rightarrow3^n\cdot30+2^n\cdot12\)

\(\Rightarrow3^n\cdot6\cdot5+2^n\cdot2\cdot6\)

\(\Rightarrow6\left(3^n\cdot5+2^n\cdot2\right)\) chia hết cho 6

8 tháng 1 2018

a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9

Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3

=> 9.10n + 18 \(⋮\) 9.3

=> 9.10n + 18 \(⋮\) 27.

b) 92n + 14 = 81n + 14.

Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.

=> 81n + 14 \(⋮\) 5

=> 92n + 14 \(⋮\) 5

6 tháng 4 2017

bài 1 dễ mà bn .bn chỉ cần tính x rùi thay vào thui mà

6 tháng 4 2017

Thì bài 1 mình bt r. Mình chỉ hỏi bài 2,3 thôi

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

c: \(1^3+7^3+3^3+5^3\)

\(=\left(1+7\right)\left(1^2-1\cdot7+7^2\right)+\left(3+5\right)\cdot\left(3^2-3\cdot5+5^2\right)\)

\(=8\cdot\left(1-7+49+9-15+25\right)⋮2^3\)(đpcm)