Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(u_n\) nguyên thì \(n^2+3n+7⋮n+1\)
=>\(n^2+n+2n+2+5⋮n+1\)
=>\(5⋮n+1\)
=>\(n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-2;4;-6\right\}\)
Vậy: \(u_n\) có 4 số hạng nhận giá trị nguyên
6:
\(u_n=8+7\left(n-1\right)=7n+1\)
7: Đặt un=7/12
=>\(\dfrac{2n+5}{5n-4}=\dfrac{7}{12}\)
=>35n-28=24n+60
=>11n=88
=>n=8
=>Đây là số hạng thứ 8
8: \(\dfrac{2n}{n^2+1}=\dfrac{9}{41}\)
=>9n^2+9=82n
=>9n^2-82n+9=0
=>(9n-1)(n-9)=0
=>n=9(nhận) hoặc n=1/9(loại)
=>Đây là số thứ 9
10B
9D
2:
a: \(u_1=\dfrac{2-1}{1+1}=\dfrac{1}{2}\)
\(u_2=\dfrac{2\cdot2-1}{2+1}=1\)
\(u_3=\dfrac{2\cdot3-1}{3+1}=\dfrac{5}{4}\)
\(u_4=\dfrac{2\cdot4-1}{4+1}=\dfrac{7}{5}\)
b: Đặt \(\dfrac{2n-1}{n+1}=\dfrac{13}{7}\)
=>7(2n-1)=13(n+1)
=>14n-7=13n+13
=>n=20
=>13/7 là số hạng thứ 20 trong dãy
1:
a: u1=1^2-1=0
u2=2^2-1=3
u3=3^2-1=8
u4=4^2-1=15
b: 99=n^2-1
=>n^2=100
mà n>=0
nên n=10
=>99 là số thứ 10 trong dãy
1:
a:
u1=1^2+1=2
u2=2^2+1=5
u3=3^2+1=10
u4=4^2+1=17
b: Đặt 101=n^2+1
=>n^2=100
=>n=10
=>101 là số hạng thứ 10
2:
a: \(u1=\dfrac{1+1}{2-1}=2\)
\(u2=\dfrac{2+1}{2\cdot2-1}=\dfrac{3}{3}=1\)
\(u_3=\dfrac{3+1}{2\cdot3-1}=\dfrac{4}{5}\)
\(u_4=\dfrac{4+1}{2\cdot4-1}=\dfrac{5}{7}\)
b: Đặt \(\dfrac{n+1}{2n-1}=\dfrac{31}{59}\)
=>59(n+1)=31(2n-1)
=>62n-31=59n+59
=>3n=90
=>n=30
=>31/59 là số hạng thứ 30 trong dãy
\(u_n\in Z\Leftrightarrow n+4⋮n+1\)
=>n+1+3 chia hết cho n+1
=>n+1 thuộc Ư(3)
mà n+1>1 với n>0
nên n+1=3
=>n=2
=>Chọn C
\(u_n=\dfrac{n+4}{n+1}\in Z\)
\(\Leftrightarrow n+4⋮n+1\)
\(\Leftrightarrow n+4-\left(n+1\right)⋮n+1\)
\(\Leftrightarrow n+4-n-1⋮n+1\)
\(\Leftrightarrow3⋮n+1\)
\(\Leftrightarrow n+1\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow n+1\in\left\{-2;0;-4;2\right\}\)
\(\Rightarrow\left(u_n\right)\)có 4 số hạng nguyên \(\rightarrow Chọn\) \(D\)
\(u_{n+1}=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{\left(2n-1\right)\cdot\left(2n+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}=\dfrac{n}{2n+1}\)
=>\(u_{50}=u_{49+1}=\dfrac{49}{2\cdot49+1}=\dfrac{49}{99}\)
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
\(4u_n=\dfrac{4\left(-9n^2+7n-2024\right)}{2n+1}=-18n+23+\dfrac{8119}{2n+1}\)
\(8119=23.353\) có 4 ước số dương nên dãy có 4 số hạng nguyên
Anh ơi! Có cần thay các giá trị n vào dãy số (un) ban đầu để kiểm tra lại không ạ