Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có:
\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)
Vậy \(S\) \(\text{⋮}\) \(-20\)
Bài 1:
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)
\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)
\(=\left(-12\right).m^2.3.n^3\)
\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)
Xét: \(m^2\ge0\) với V m
3>0 nên \(m^2.3\ge0\) với V m
Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)
-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)
Vậy với n<0 và mọi m thì \(A\ge0\)
Đáp án D
Ta có
u 1 = 1 S 100 = 24850 ⇔ u 1 = 1 100 2 u 1 + 99 d = 24850 ⇒ u 1 = 1 d = 5 ⇒ u n − u n − 1 5 = 1
Khi đó
5 S = 5 u 1 u 2 + 5 u 2 u 3 + ... + 5 u 49 u 50 = u 2 − u 1 u 1 u 2 + u 3 − u 2 u 2 u 3 + ... + u 50 − u 49 u 49 u 50 = 1 u 1 − 1 u 2 + 1 u 2 − 1 u 3 + ... + 1 u 49 − 1 u 50 = 1 − 1 u 50 = 1 − 1 u 1 + 49 d = 245 246 ⇒ S = 49 246
Ta có
xoy + yoz =180o (kề bù)
<=> 5yoz+ yoz=1800
6yoz=180o
=> yoz=30o
=> xoy=5x30=150o
hình bạn tự vẽ nhé
b) Vì ot nằm giữ góc xoy(xoy>xot, 150o>100o) nên:
xot+toy=xoy
100o+yot=150o
yot=50o
Vì ot nằm giữa zox ( zox>tox, 180o>100o) nên
zot+tox=zox
zot+100o=180o
zot=80o
Đáp án D
Ý tưởng bài toán: Với bài toán dạng này, ta thường chọn hai giá trị a, b bất kì, tính tổng f a + f b và tìm mối quan hệ giữa hai giá trị a, b.
f a + f b = log 2 a log 2 a + 1 + log 2 b log 2 b + 1 = 2 log 2 a log 2 b + log 2 a + log 2 b log 2 a + 1 log 2 b + 1
= 2 log 2 a log 2 b + log 2 a + log 2 b log 2 a log 2 b + log 2 a + log 2 b + 1 = 2 log 2 a log 2 b + log 2 a b log 2 a log 2 b + log 2 a b + 1
Cần chọn hai giá trị a, b sao cho tử rút gọn được với mẫu.
Ta thường chọn a+b=k hoặc ab=k. Ở bài toán này ta chọn ab=k.
Nếu a b = 1 4 thì log 2 a b = log 2 1 4 = − 2 .
Suy ra
f a + f b = 2 log 2 a log 2 b − 2 log 2 a log 2 b − 2 + 1 = 2
Vậy với các giá trị a, b thỏa mãn a b = 1 4 thì f a + f b = 2 .
Ta có
S = f 2 − 100 + f 2 − 99 + ... + f 2 − 2 + f 2 0 + f 2 1 + ... + f 2 98
= f 2 − 100 + f 2 98 + f 2 − 99 + f 2 97 + ... + f 2 − 2 + f 2 0 = 2 + 2 + ... + 2 ⏟ 99 s o 2
= 99.2 = 198 .
Đáp án C
Ta có S 100 = 50 2 u 1 + 99 d ⇒ d = 5
⇒ 5 S = 5 u 1 u 2 + 5 u 2 u 3 + ... + 5 u 49 u 50 = u 2 − u 1 u 1 u 2 + u 3 − u 3 u 2 u 3 + ... + u 50 − u 49 u 49 u 50
= 1 u 1 − 1 u 2 + 1 u 2 − 1 u 3 + ... + 1 u 49 − 1 u 50 = 1 u 1 − 1 u 1 + 49 d = 245 246 ⇒ S = 49 246