K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 3 2022

Gọi số học sinh của lớp chuyên toán là x và số học sinh của lớp chuyên tin là y (x;y>0)

Do tổng 2 lớp có 60 học sinh nên: \(x+y=60\)

Chuyển 15 học sinh từ lớp tin sang lớp toán thì số học sinh lớp tin là \(y-15\) và số học sinh lớp toán là \(x+15\)

Do khi đó số học sinh lớp toán gấp 2 lần lớp tin nên: \(x+15=2\left(y-15\right)\Rightarrow x-2y=-45\)

Ta được hệ: \(\left\{{}\begin{matrix}x+y=60\\x-2y=-45\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=25\\y=35\end{matrix}\right.\)

5 tháng 4 2020

toán 60

văn 15

5 tháng 4 2020

toán thì là 60

văn thì là 15 nhé

28 tháng 6 2020

Gọi số học sinh chuyên toán là x

Số học sinh chuyên tin là y (học sinh, x,y \(\in\)N*, y>15)

Theo bài ta có: x+y = 60 (1)

Lại có nếu chuyển 15 học sinh từ chuyên Tin sang chuyên Toán thì số học sinh chuyên Toán gấp đôi số học sinh chuyên Tin

=> x+15 = 2(y-15)

<=> x+15 = 2y-30

<=>x-2y=-45 (2)

Từ 1 + 2

=> \(\left\{{}\begin{matrix}x+y=60\\x-2y=-45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=105\\x+y=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=35\\x=25\end{matrix}\right.\)(tm x,y \(\in\)N*, x> 15)

Vậy.....

Hok tốt

28 tháng 6 2020

lộn

có rồi nha bạn ko cần nhắc lại đâu tks nha

1 tháng 9 2018

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

[HÌNH HỌC CHUYÊN TOÁN 2021]Nhằm hỗ trợ các bạn trong việc ôn thi chuyên toán (đặc biệt về mảng hình học), sau khi thảo luận với các admin của page Cuộc thi Trí tuệ VICE, mình xin phép lập ra chuyên mục [Hình học chuyên toán 2021]Trả lời đúng và hay (không copy) sẽ được nhận 1-2GP/câu trả lời nha ^^Các bạn ơi, đừng quên like/share bài viết của page và mời bạn bè thích page để nhận được những phần quà hấp dẫn...
Đọc tiếp

[HÌNH HỌC CHUYÊN TOÁN 2021]

undefined

Nhằm hỗ trợ các bạn trong việc ôn thi chuyên toán (đặc biệt về mảng hình học), sau khi thảo luận với các admin của page Cuộc thi Trí tuệ VICE, mình xin phép lập ra chuyên mục [Hình học chuyên toán 2021]

Trả lời đúng và hay (không copy) sẽ được nhận 1-2GP/câu trả lời nha ^^

Các bạn ơi, đừng quên like/share bài viết của page và mời bạn bè thích page để nhận được những phần quà hấp dẫn của page nha. Ngoài ra các bạn có thể gửi những bài toán hay về cho page để được tính điểm xếp hạng nè.

Câu 1.

Cho tam giác ABC có ba góc nhọn và $AB<AC.$ Vẽ đường cao AH, đường tròn đường kính HB cắt AB tại D và đường tròn đường kính HC cắt AC tại E.

a) Chứng minh tứ giác ADHE nội tiếp.

b) Gọi I là giao của DE và BC. Chứng minh $IH^2=ID\cdot IE.$

c) Gọi $M,N$ lần lượt là giao của DE với đường tròn đường kính HB và đường tròn đường kính HC. Chứng minh giao điểm hai đường thẳng BM và CN năm trên đường thẳng AH.

Câu 2.

Cho tam giác nhọn ABC không cân có $AB<AC,$ trực tâm $H$ và đường trung tuyến AM. Gọi K là hình chiếu vuông góc của $H$ lên $AM,$ D là điểm đối xứng của $A$ qua $M$ và $L$ là điểm đối xứng của $K$ qua BC.

a) Chứng minh các tứ giác BCKH và ABLC nội tiếp.

b) Chứng minh $\angle LAB=\angle MAC.$

c) Gọi $I$ là hình chiếu vuông góc của $H$ lên $AL, X$ là giao của $AL$ và $BC.$ Chứng minh đường tròn ngoại tiếp tam giác $BHC$ và đường tròn ngoại tiếp tam giác $IXM$ tiếp xúc với nhau.

Câu 3.

Cho tam giác ABC là tam giác nhọn, không cân, có I là tâm đường tròn nội tiếp. Hai đường thẳng AI và BC cắt nhau tại điểm D. Gọi E, F lần lượt là điểm đối xứng của D qua các đường thẳng IB và IC.

a) Chứng minh EF//BC

b) Gọi M, N, J lần lượt là trung điểm $DE,DF,EF.$ Đường tròn ngoại tiếp tam giác AEM và tam giác AFN cắt nhau tại điểm thứ hai là P. Chứng minh $M,P,N,J$ đồng viên.

c) Chứng minh ba điểm $A,P,J$ thẳng hàng.

Ps. Em mượn hình của cô @Đỗ Quyên ạ.

5
19 tháng 3 2021

tth giờ chuyển sang hình rồi à :))

Câu 2:

Kẻ đường cao AG, BE, CF của tam giác ABC.

Dễ thấy tứ giác HKMG, HECG nội tiếp.

Do đó AK . AM = AH . AG = AE . AC. Suy ra tứ giác KECM nội tiếp.

Tương tự tứ giác KFCM nội tiếp.

Do đó \(\widehat{BKC}=\widehat{BKM}+\widehat{CKM}=\widehat{BFM}+\widehat{CEM}=\widehat{ABC}+\widehat{ACB}=\widehat{BHC}\). Suy ra tứ giác BHKC nội tiếp.

Ta có \(\widehat{BLC}=\widehat{BKC}=\widehat{BHC}=180^o-\widehat{BAC}\) nên tứ giác ABLC nội tiếp.

b) Ta có tứ giác KECM nội tiếp nên \(\widehat{MKC}=\widehat{MEC}=\widehat{ACB}\). Do đó \(\Delta MKC\sim\Delta MCA\left(g.g\right)\).

Suy ra \(\widehat{KCM}=\widehat{KAC}\Rightarrow\widehat{LAB}=\widehat{LCB}=\widehat{KCB}=\widehat{KAC}\).

c) Ta có kq quen thuộc là \(\Delta LMB\sim\Delta LCA\).

Kẻ tiếp tuyến Lx của (ABC) sao cho Lx nằm cùng phía với B qua AL.

Ta có \(\widehat{ALx}=\widehat{ACL}=\widehat{LMX}\Rightarrow\) Ax là tiếp tuyến của (LXM).

Do đó (ABC) và (LXM) tiếp xúc với nhau.

Ta có AI . AX = AH . AG = AK . AM nên I, X, M, K đồng viên.

Ta có kq quen thuộc là (HBC) và (ABC) đối xứng với nhau qua BC.

Lại có (IKMX) và (LMX) đối xứng với nhau qua BC.

Suy ra (HC) và (IKMX) cũng tiếp xúc với nhau.

19 tháng 3 2021

Câu 1 :

a Ta có \(\Lambda CHE\),  \(\Lambda HDB\) là các góc chắn nửa đường tròn đường kính HC;HB \(\Rightarrow\Lambda CHE=\Lambda HDB=90^0\)  Mà \(\Lambda CHE+\Lambda AEH=180^0\Rightarrow\Lambda HDB+\Lambda AEH=180^0\Rightarrow\) Tứ giác ADHE nội tiếp

b Từ câu a ta có:  tứ giác ADHE nt \(\Rightarrow\Lambda IEH=\Lambda DEH=\Lambda DAH=\Lambda BAH\) Mà \(\Lambda BAH=\Lambda BHD=\Lambda IHD\)( cùng phụ với góc ABH) 

\(\Rightarrow\Lambda IEH=\Lambda IHD\) Lại có \(\Lambda EIH=\Lambda HID\) \(\Rightarrow\Delta IEH\sim\Delta IHD\left(g.g\right)\Rightarrow\dfrac{IH}{ID}=\dfrac{IE}{IH}\Rightarrow IH^2=ID\cdot IE\)

c Gọi giao điểm của BM với AC là K; CN với AB là J

Từ câu a ta có tứ giác ADHE nt \(\Rightarrow\Lambda KAH=\Lambda EAH=\Lambda DEH=\dfrac{1}{2}sđMH\) Mà \(\Lambda MHA=\dfrac{1}{2}sđMH\Rightarrow\Lambda KAH=\Lambda MHA\) Lại có \(\Lambda ABK=\Lambda DMH\left(=\dfrac{1}{2}sđDM\right)\) ; \(\Lambda BAH=\Lambda BHD\) (từ câu b)

\(\Rightarrow\Lambda BAH+\Lambda KAH+\Lambda BAK=\Lambda MHA+\Lambda DMH+\Lambda BHD=\Lambda AHB=90^0\Rightarrow\Lambda BKA=90^0\) \(\Rightarrow\) BK vuông góc với CA tại K\(\Rightarrow BM\) vuông góc với AC tại K(1)

Chứng minh tương tự ta được: CN vuông góc với AB tại J(2)

Xét tam giác ABC có BK vuông góc với CA; CJ vuông góc với AB ; AH vuông góc với BC \(\Rightarrow\) BK;CJ;AH là 3 đường cao của tam giác ABC 

\(\Rightarrow BK;CJ;AH\) đồng quy \(\Rightarrow BM;CN;AH\) đồng quy

21 tháng 8 2018

cảm ơn online math mà cho em hỏi em đang học lớp bảy vậy khi em lên lớp mười có đc nhận nữa ko

mong cô trả lời 

sao các giáo viên dạo này ko trả lời cho học sinh nữa ạ

AA
21 tháng 8 2018

Các bạn ở tất cả các khối lớp có thể đặt câu hỏi cho thầy Đông nhé. Thầy Đông từng đạt giải Ba Toán quốc gia hồi thầy là học sinh THPT. 

HOT !!! RA MẮT SỰ KIỆN CHINH PHỤC KÌ THI CHUYÊN TOÁN  - Trước kì thi vào lớp 10, ngoài việc phải trang bị kiến thức, các bạn học sinh còn phải chuẩn bị tâm lí thật vững vàng. - Việc thi thử sẽ giúp các bạn học sinh nhận biết bản thân còn yếu ở phần nào để từ đó có phương án ôn tập thật hiệu quả. Ngoài ra, thi thử trong thời gian thật sẽ giúp các bạn làm quen với áp lực trong phòng...
Đọc tiếp

HOT !!! RA MẮT SỰ KIỆN CHINH PHỤC KÌ THI CHUYÊN TOÁN

 

 - Trước kì thi vào lớp 10, ngoài việc phải trang bị kiến thức, các bạn học sinh còn phải chuẩn bị tâm lí thật vững vàng.

 - Việc thi thử sẽ giúp các bạn học sinh nhận biết bản thân còn yếu ở phần nào để từ đó có phương án ôn tập thật hiệu quả. Ngoài ra, thi thử trong thời gian thật sẽ giúp các bạn làm quen với áp lực trong phòng thi.

------------------------------------------------------------

 

 Vì vậy, VICE đã cùng các bạn học sinh trường THPT Chuyên Bến Tre tổ chức KÌ THI THỬ VÀO LỚP 10 CHYÊN TOÁN MIỄN PHÍ DÀNH CHO CÁC BẠN 2K7, 2K8:

 

 *Đối tượng tham gia: Các bạn học sinh 2k7 đang chuẩn bị tham gia kì thi vào 10 chuyên toán, các bạn 2k8 dự định thi chuyên toán vào năm sau.

 

 *Thời gian: 20h ngày 28/05/2022. Thời gian làm bài là 120 phút.

 

 *Nền tảng: OLM.VN Các bạn phải tạo trước một nick OLM để tham gia dự thi.

 

 *Link đăng ký dự thi: https://forms.gle/cG7pB43Mnu2t2TmT7

 

 *Quy chế thi:

-Thời gian làm bài: 120 phút, thí sinh chỉ được phép nộp sau 5 phút làm bài.

- Thoát ra khỏi màn hình làm bài quá 2 lần, hệ thống sẽ tự động nộp bài.

- Nghiêm cấm các hành vi gian lận dưới mọi hình thức, nếu không sẽ huỷ kết quả bài dự thi.

 

 *Giải thưởng:

- 1 giải nhất: 200k.

- 1 giải nhì: 100k.

- 2 giải ba: mỗi giải 50k.

Ngoài ra các bạn thí sinh có thành tích cao trong kì thi thử đợt này sẽ có cơ hội được VICE chiêu mộ làm Biên tập viên tập sự.

-----------------------------------------------------

Ngoài sự kiện chính là thi thử ra, thì VICE cùng với Chuyên Toán - Chuyên Bến Tre cũng sẽ có một series bài viết về kiến thức liên quan đến kì thi Chuyên Toán vào lớp 10. Mọi người nhớ follow 2 page để theo dõi nha.

Bên cạnh đó, để các bạn có thể giao lưu và học hỏi với nhau, kênh Discord của VICE sẽ là nơi giúp đỡ các bạn nếu gặp khó khăn trong việc ôn thi.

-----------------------------------------------------

Mọi thắc mắc về cuộc thi xin liên hệ:

- Fanpage Cuôc thi Trí tuệ VICE: https://www.facebook.com/vice.contest

- Fanpage Chuyên Toán - Chuyên Bến Tre: https://www.facebook.com/chuyentoancbt

#vice #cuocthitrituevice #chuyenbentre #cbt #thithuvao10 #chuyentoan #sukien #tuyensinhvaolop10 #thicapba #maths  

Có thể là tranh biếm họa về văn bản cho biết 'VE VICE CONTES CHINH PHỤC KÌ THI Chuyên Toán'

49
21 tháng 5 2022

đợi hóng thôi :>

mik mới lớp 7 ;-;

chỉ đứng nhìn ;-;

21 tháng 5 2022

có 2k11 thì tham gia ạ:")