Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(A=\frac{8n+193}{4n+3}=\frac{\text{2. (4n+3) + 187}}{\text{4n + 3 }}=2+\frac{187}{4n+3}\)
⇒187 ÷ 4n + 3⇒4n + 3 ∈ Ư (187) = {17;11;187}
+ 4n + 3 = 11 => n = 2
+ 4n +3 = 187 => n = 46
+ 4n + 3 = 17 => 4n = 14 ( loại )
Vậy n = 2 và 46
B) Gọi ƯCLN ( 8n + 193; 4n + 3) = d
=> ( 8n + 193; 4n + 3 ) : d => (8n + 193) - 2.(4n+3)
=> ( 8n+193 ) - ( 8n + 6 ) : d
=> 187 : d mà A là phân số tối giản => A ≠ 187
=> n ≠ 11k + 2 (k ∈ N)
=> n ≠ 17m + 12 (m ∈ N )
c) n = 156 => A = 77/19
n = 165 => A = 89/39
n = 167 => A = 139/61
a ) Để A có giá trị là số tự nhiên
=> A thuộc N
=> 8n + 193 \(⋮\)4n + 3
=> 8n + 6 + 187 \(⋮\)4n + 3
=> 2 . ( 4n + 3 ) + 187 \(⋮\)4n + 3 mà 2 . ( 4n + 3 )\(⋮\)4n + 3 => 187 \(⋮\)4n + 3
=> 4n + 3 thuộc Ư ( 187 ) = { - 17 ; - 11 ; - 1 ; 1 ; 11 ; 17 }
Lập bảng tính giá trị n :
4n + 3 | - 17 | - 11 | - 1 | 1 | 11 | 17 |
n | - 5 | / | - 1 | / | 2 | / |
Thử các giá trị của n ta thấy chỉ có mỗi giá trị n = 2 thì thỏa mãn đề bài
A=\(\frac{8n+193}{4n+3}=\frac{4n+6+187}{4n+3}\)
=\(\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để A tối giản thì \(187⋮4n+3\)
=> \(4n+3\inƯ\left(187\right)=\left\{11,17,187,1\right\}\)
TH1: 4n + 3 = 11 => 4n = 11 - 3 = 8
=> n = \(\frac{8}{4}=2\)(TMĐK)
TH2: 4n + 3 = 17 => 4n = 17 - 3
= 14 (loại) vì 14 không chia hết cho 4
TH3: 4n + 3 = 1 => 4n = 1 - 3
= -2 (loại ) vì \(\frac{-2}{4}\)không phải là số tự nhiên
TH4: 4n + 3 = 187 => 4n = 187 - 3 = 184
=> n = \(\frac{184}{4}=36\)(TMĐK)
Vậy n = 36 hoặc 2 thì A tối giản
Chúc bạn học tốt !
Gọi ƯCLN(8n + 193;4n + 3) = d
Suy ra: (8n + 193;4n + 3) chia hết cho d . Suy ra: (8n + 193) - 2.(4n + 3)
Suy ra: (8n + 193) - (8n + 6) chia hết cho d
Suy ra: 187 chia hết cho d mà A là phân số tối giản suy ra A khác 187
Suy ra: n khác 11k + 2(k thuộc N)
Suy ra: n khác 17m + 12(m thuộc N)
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
\(A=\frac{8n+193}{4n+3}\)
\(=\frac{8n+6+187}{4n+3}\)
\(=\frac{2\left(4n+3\right)+187}{4n+3}\)
\(=2+\frac{187}{4n+3}\)
Đến chỗ này chắc bạn làm tiếp được
a,39.213+87.39 =39.(213+87) =39.300 =11700
b, 27.75+25.27-150 =27.(75+25)-150 =27.100-150=2550