Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mạch chỉ có điện trở thuần thì u cùng pha với i.
Nếu \(u=U_0\cos\left(\omega t+\varphi\right)\)
Thì: \(i=I_0\cos\left(\omega t+\varphi\right)\)
\(\Rightarrow\frac{u}{U_0}=\frac{i}{I_0}\)
\(\Rightarrow\frac{u^2}{U_0^2}+\frac{i^2}{I_0^2}=1\) là sai.
Đoạn mạch chỉ có cuộn cảm thuần thì i trễ pha \(\frac{\pi}{2}\)so với u.
\(I_0=\frac{U_0}{Z_L}=\frac{U_0}{\omega L}\)
Suy ra \(i=\frac{U_0}{\omega L}\cos\left(\omega t-\frac{\pi}{2}\right)\)
Mạch chỉ có cuôn cảm thì cường độ dòng điện và điện áp tức thời vuông pha tức là
\(\frac{i^2}{I_0^2}+\frac{u^2}{U_0^2} = 1. \)
với \(i = 2A, u = 100\sqrt{2V}\) => \(\frac{4}{I_0^2}+\frac{(100\sqrt{2})^2}{U_0^2} =1\)
mà \(U_0 = I_0 Z_L = 50I_0\)(\(Z_L = L \omega = 50 \Omega.\)) Thay vào phương trình trên ta được
\(\frac{4}{I_0^2}+\frac{20000}{2500.I_0^2} = 1\)=> \(\frac{12}{I_0^2} = 1=> I_0 = 2\sqrt{3}A.\)
Mạch chỉ có cuộn cảm thuần => u sớm pha hơn i là \(\pi/2\). Tức là \(\varphi_u - \varphi_i = \frac{\pi}{2} => \varphi_i = \frac{\pi}{3}-\frac{\pi}{2} = -\frac{\pi}{6}.\)
\(i = 2\sqrt{3} \cos (100\pi t -\frac{\pi}{6})A.\)
Chọn đáp án A bạn nhé.
Do mạch chỉ có tụ C thì u vuông pha với i, nên ta có:
\(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
\(\Rightarrow\left(\frac{60}{U_0}\right)^2+\left(\frac{\sqrt{3}}{I_0}\right)^2=1\)
\(\left(\frac{60\sqrt{2}}{U_0}\right)^2+\left(\frac{\sqrt{2}}{I_0}\right)^2=1\)
\(\Rightarrow\begin{cases}U_0=120V\\I_0=2A\end{cases}\)
tan \(\varphi\)=1=\(\frac{Z_C-Z_L}{R}\Rightarrow\)ZC=R+\(\omega\)L=125
CHỌN A
Cho mình hỏi là sao phi lại bằng 1 vậy. Giải thích mình tí với
Do \(u_L\) vuông pha với \(i\)nên \(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
Khi u cực đại thì \(u=U_0\), thế vào biểu thức trên ta tìm đc i = 0.
D