Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, lũy thừa là một phép toán thực hiện trên hai số a, b, ký hiệu là $a^b$ab, đọc là lũy thừa bậc b của a, số a gọi là cơ số, số b gọi là số mũ.
2,
giai thừa là một toán tử một ngôi trên tập hợp các số tự nhiên. Cho n là một số tự nhiên dương, "n giai thừa", kí hiệu n! là tích của n số tự nhiên dương đầu tiên:
n! = n.(n-1).(n-2)....4.3.2.1
3Số chính phương hay còn gọi là số hình vuông là số tự nhiên có căn bậc 2 là một số tự nhiên, hay nói cách khác, số chính phương là bình phương (lũy thừa bậc 2) của một số tự nhiên khác.
4,nếu tổng tất cảcác chữ số ở vị trí chẵn như 2 4 6 8 bằng tổng các chữ số ở vị trí lẻ thì x chia hết cho 11.
5,
Số nguyên tố là số tự nhiên chỉ chia hết cho 1 và chính nó. Ngoài ra nó không chia hết cho bất cứ số nào khác. Số 0 và 1 không được coi là số nguyên tố.[1]
Số 2 là số nguyên tố nhỏ nhất, và cũng là số nguyên tố chẵn duy nhất.
6
Nếu a là phần tử của tập hợp A, ta ký hiệu a A. Khi đó ta cũng nói rằng phần tử a thuộc tập hợp A.
Một tập hợp có thể là một phần tử của một tập hợp khác. Tập hợp mà mỗi phần tử của nó là một tập hợp còn được gọi là họ tập hợp.
Lý thuyết tập hợp cũng thừa nhận có một tập hợp không chứa phần tử nào, được gọi là tập hợp rỗng, ký hiệu là . Các tập hợp có chứa ít nhất một phần tử được gọi là tập hợp không rỗng
7
-Các phần tử của một tập hợp được viết trong hai dấu ngoặc { } , cách nhau bỡi dấu “ ; “ hay dấu “ , “ .
-Mỗi phần được liệt kê một lần , thứ tự liệt kê tùy ý .
-Ngoài cách viết liệt kê tất cả các phần tử của tập hợp ta có thể viết bằng cách chỉ ra tính chất đặc trưng của các phần tử
mk chỉ giúp bn một số câu mk biết thui nhé
B8 .
x thuộc N mà 84 và 180 chia hết cho x nên:
x thuộc ƯC (84 ; 180) và x > 6
ƯCLN (84,180) = 12
a thuộc ƯC (84 ;180) = Ư(12) = { 1;2;3;4;6;12} và x > 6
Suy ra x = 12
B9
Theo như bài trên thì ƯC (84 , 180} > 10 là 12
B10
số cần điền là chữ số 0
Cảm ơn các anh chị nhiều ạ. Em cũng xin lỗi vì nó hơi nhiều ạ
1 . Ta có 2 cách viết một tập hợp :
Cách cách đó là : Cách 1:
- Liệt kê phần tử.
- Chỉ ra tính chất đắc chưng của nó.
2 . Lũy thừa bậc n của a là : a. a. a. ... a
có n thừa số a ( n khác 0 )
a là cơ số, n là số mũ .
3 . Nhân hai lũy thừa cùng cơ số : am . an = am+n
Chia hai lũy thừa cùng cơ số : am : an = am-n
4. a thuộc N , b thuộc N
Nếu : ta có : a chia hết cho b
Nếu có số q sao cho a = b . q ( b khác 0 )
5 . Tính chất chia hết của 1 tổng :
+ a chia hết cho m , b chia hết cho m => a + b chia hết cho m
+ a chia hết cho m , b không chia hết cho m => a + b không chia hết cho m trừ khi có trường hợp + vào thì chia hết cho m.