K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(2x^2+2x+3\)

\(=2\left(x^2+x+\frac32\right)\)

\(=2\left(x^2+x+\frac14+\frac54\right)\)

\(=2\left(x+\frac12\right)^2+\frac52\ge\frac52\forall x\)

=>\(\frac{3}{2x^2+2x+3}\le3:\frac52=\frac65\forall x\)

Dấu '=' xảy ra khi \(x+\frac12=0\)

=>\(x=-\frac12\)

b: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

=>\(\frac{1}{-x^2+2x-2}\ge\frac{1}{-1}=-1\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

c: \(3x^2+4x+15\)

\(=3\left(x^2+\frac43x+5\right)\)

\(=3\left(x^2+2\cdot x\cdot\frac23+\frac49+\frac{41}{9}\right)\)

\(=3\left(x+\frac23\right)^2+\frac{41}{3}\ge\frac{41}{3}\forall x\)

=>\(\frac{5}{3x^2+4x+15}\le5:\frac{41}{3}=\frac{15}{41}\)

=>\(-\frac{5}{3x^2+4x+15}\ge-\frac{15}{41}\forall x\)

Dấu '=' xảy ra khi \(x+\frac23=0\)

=>\(x=-\frac23\)

d: \(-4x^2+8x-5\)

\(=-4\left(x^2-2x+\frac54\right)\)

\(=-4\left(x^2-2x+1+\frac14\right)\)

\(=-4\left(x-1\right)^2-1<=-1\forall x\)

=>\(\frac{2}{-4x^2+8x-5}\ge\frac{2}{-1}=-2\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

a: \(x^2-x+1\)

\(=x^2-x+\frac14+\frac34\)

\(=\left(x-\frac12\right)^2+\frac34\ge\frac34>0\forall x\)

b: \(x^2+x+2\)

\(=x^2+x+\frac14+\frac74\)

\(=\left(x+\frac12\right)^2+\frac74\ge\frac74>0\forall x\)

c: \(-a^2+a-3\)

\(=-\left(a^2-a+3\right)\)

\(=-\left(a^2-a+\frac14+\frac{11}{4}\right)\)

\(=-\left(a-\frac12\right)^2-\frac{11}{4}\le-\frac{11}{4}<0\forall a\)

d:Đặt \(A=\frac{3x^2-x+1}{-4x^2+2x-1}\)

\(3x^2-x+1\)

\(=3\left(x^2-\frac13x+\frac13\right)\)

\(=3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}+\frac{11}{36}\right)\)

\(=3\left(x-\frac16\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\) (1)

\(-4x^2+2x-1\)

\(=-4\left(x^2-\frac12x+\frac14\right)\)

\(=-4\left(x^2-2\cdot x\cdot\frac14+\frac{1}{16}+\frac{3}{16}\right)\)

\(=-4\left(x-\frac14\right)^2-\frac34\le-\frac34<0\forall x\) (2)

Từ (1),(2) suy ra \(\frac{3x^2-x+1}{-4x^2+2x-1}<0\forall x\)

=>A<0 với mọi x

NV
3 tháng 9

Bằng hình vẽ này thì câu hỏi ko trả lời được đâu em.

Hai tam giác vẽ chẳng chính xác gì hết, giao điểm cũng ko rõ ràng vị trí.

không giải được á


S
20 tháng 8

xét tứ giác AEHF ta có:

góc BAC = góc HEA = góc HFA = 90 độ

⇒ tứ giác AEHF là hình chữ nhật

a: \(\left(a+b\right)^2-2ab\)

\(=a^2+2ab+b^2-2ab\)

\(=a^2+b^2\)

b: \(\left(a^2+b^2\right)^2-2a^2b^2\)

\(=\left(a^2\right)^2+2\cdot a^2\cdot b^2+\left(b^2\right)^2-2a^2b^2\)

\(=a^4+b^4\)

c: \(a^6+b^6=\left(a^2\right)^3+\left(b^2\right)^3\)

\(=\left(a^2+b^2\right)\left\lbrack\left(a^2\right)^2-a^2\cdot b^2+\left(b^2\right)^2\right\rbrack\)

\(=\left(a^2+b^2\right)\left\lbrack a^4-a^2b^2+b^4\right\rbrack\)

\(=\left(a^2+b^2\right)\left\lbrack a^4+2a^2b^2+b^4-3a^2b^2\right\rbrack\)

\(=\left(a^2+b^2\right)\left\lbrack\left(a^2+b^2\right)^2-3a^2b^2\right\rbrack\)


a: Gọi M,N lần lượt là trung điểm của AB,CD
Ta có: ΔIAB vuông cân tại I

=>IA=IB; \(\hat{AIB}=90^0\) ; \(\hat{IAB}=\hat{IBA}=45^0\)

ΔKDC vuông cân tại K

=>KD=KC; \(\hat{DKC}=90^0;\hat{KDC}=\hat{KCD}=45^0\)

ΔIAB vuông tại I

=>\(IA^2+IB^2=AB^2\)

=>\(2\cdot IA^2=CD^2\left(1\right)\)

ΔKCD vuông tại K

=>\(KD^2+KC^2=DC^2\)

=>\(2\cdot KD^2=CD^2\left(2\right)\)

Từ (1),(2) suy ra IA=KD

mà IA=IB và KD=KC

nên IA=IB=KD=KC

Ta có: ΔIAB cân tại I

mà IM là đường trung tuyến

nên IM⊥AB tại M

Ta có: \(AM=MB=\frac{AB}{2}\)

\(DN=NC=\frac{DC}{2}\)

mà AB=CD
nên AM=MB=DN=NC

Xét tứ giác AMND có

AM//ND

AM=ND

Do đó: AMND là hình bình hành

Hình bình hành AMND có \(\hat{DAM}=90^0\)

nên AMND là hình chữ nhật

=>AM⊥MN

=>MN⊥AB

ΔKDC cân tại K

mà KN là đường trung tuyến

nên KN⊥DC tại N

mà DC//AB

nên KN⊥AB

mà MN⊥AB

và KN,MN có điểm chung là N

nên K,N,M thẳng hàng(1)

Ta có: IM⊥AB

MN⊥AB

mà IM,MN có điểm chung là M

nên I,M,N thẳng hàng(2)

Từ (1),(2) suy ra K,N,M,I thẳng hàng

Xét ΔEIK có AD//IK

nên \(\frac{EA}{AI}=\frac{ED}{DK}\)

mà AI=DK

nên EA=ED

Ta có: EA+AI=EI

ED+DK=EK

mà EA=ED và AI=DK

nên EI=EK

=>E nằm trên đường trung trực của IK(3)

Xét ΔFKI có BC//KI

nên \(\frac{FB}{BI}=\frac{FC}{CK}\)

mà BI=CK

nên FB=FC

Ta có: FB+BI=FI

FC+CK=FK
mà FB=FC và BI=CK

nên FI=FK

=>F nằm trên đường trung trực của IK(4)

từ (3),(4) suy ra FE là đường trung trực của IK

=>FE⊥IK

mà IK⊥CD

nên FE//CD

b: Xét ΔKEF có DC//EF
nên \(\frac{KD}{DE}=\frac{KC}{CF}\)

mà KD=KC

nên DE=CF

Ta có: KD+DE=KE

KC+CF=KF

mà KD=KC và DE=CF

nên KE=KF

=>IE=EK=KF=FI

=>IEKF là hình thoi

Hình thoi IEKF có \(\hat{EIF}=90^0\)

nên IEKF là hình vuông

10 giờ trước (14:59)

a: Xét tứ giác AIBG có

AI//BG

AG//BI

Do đó: AIBG là hình bình hành

=>BG=AI

\(\frac{2a-b}{a-b}+\frac{-a}{a-b}\)

\(=\frac{2a-b+\left(-a\right)}{a-b}\)

\(=\frac{a-b}{a-b}\)

=1