Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Nếu ý bạn là ||3x-3|+2x+(-1)2016 |=3x+20170 thì bạn có thể tham khảo:https://h.vn/hoi-dap/question/514972.html
Nhưng nếu ý bạn là pt thế này thì... áp dụng tương tự nhé! Khổ hơn thôi :V
2) Đây là nơi bạn cần tìm: https://h.vn/hoi-dap/question/562808.html
Học tốt nhé ^3^
Bài 1 :
\(\left||3x-3|+2x+\left(-1\right)\left(2016\right)=3x+20170\right|\)
\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|+2x-2016=3x+20170\\\left|3x-3\right|+2x-2016=-3x-20170\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|=3x-2x+2016+20170\\\left|3x-3\right|=-3x-20170-2x+2016\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|=x+22186\\\left|3x-3\right|=-5x-18154\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x-3=x+22186\\3x-3=-x-22186\end{cases}}\)hoặc \(\orbr{\begin{cases}3x-3=-5x-18154\\3x-3=5x+18154\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x-x=22186+3\\3x+x=3-22186\end{cases}}\)hoặc \(\orbr{\begin{cases}3x+5x=3-18154\\3x-5x=3+18154\end{cases}}\)
Còn lại tự làm nốt nhá !
a) Ta có:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)
b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)
.....Chưa nghĩ ra....
c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)
Vậy Min P = 0 khi x =9.
k - kb với tớ nhia mn!
câu a
x phải dương và x khác 4
câu b
x = 9 P = 4
x = 4 P không xác định vì mẫu số= 0
Câu c
P ≤ 0 thì | P| > P
hết giờ rôi bạn hiền
a, Với \(x>0;x\ne1\)
\(P=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)^2\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)
\(=\frac{x^2-2x+1}{4x}.\frac{-4\sqrt{x}}{x-1}=\frac{1-x}{\sqrt{x}}\)
Thay x = 4 => \(\sqrt{x}=2\)vào P ta được :
\(\frac{1-4}{2}=-\frac{3}{2}\)
c, Ta có : \(P< 0\Rightarrow\frac{1-x}{\sqrt{x}}< 0\Rightarrow1-x< 0\)vì \(\sqrt{x}>0\)
\(\Rightarrow-x< -1\Leftrightarrow x>1\)
\(A=\dfrac{3x^2+3x+4}{x^2+x+1}=\dfrac{3\left(x^2+x+1\right)}{x^2+x+1}+\dfrac{1}{x^2+x+1}=3+\dfrac{1}{x^2+x+1}\)
Do \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Rightarrow\dfrac{1}{x^2+x+1}\le\dfrac{4}{3}\)
\(\Rightarrow A\le3+\dfrac{4}{3}=\dfrac{13}{3}\)
\(maxA=\dfrac{13}{3}\Leftrightarrow x=-\dfrac{1}{2}\)
Ta có:\(\dfrac{3x^2+3x+4}{x^2+x+1}=\dfrac{3\left(x^2+x+1\right)+1}{x^2+x+1}=3+\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\Leftrightarrow\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A\le3+\dfrac{4}{3}=\dfrac{13}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)