Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(r^2+p^2+4Rr=\left(\dfrac{S}{p}\right)^2+p^2+\dfrac{abc}{S}.\dfrac{S}{p}\)
\(=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}+p^2+\dfrac{abc}{p}\)
\(=\dfrac{p^3+\left(ab+bc+ac\right)p-p^2\left(a+b+c\right)-abc+p^3+abc}{p}\)
\(=ab+bc+ca\)
Do đó:
\(\dfrac{ab+bc+ca}{4R^2}=\dfrac{r^2+p^2+4Rr}{4R^2}\)
\(\Leftrightarrow sinAsinB+sinBsinC+sinCsinA=\dfrac{r^2+p^2+4Rr}{4R^2}\)\(\left(đpcm\right)\)
bạn giải thích chi tiết đoạn này hộ mình được ko ạ
p^3+(ab+bc+ac)p−p^2(a+b+c)−abc+p^3+abc/p
=ab+bc+ca
Gọi M là trung điểm BC, I là tâm đường tròn nội tiếp và N là hình chiếu của I lên AB
\(\Rightarrow\left\{{}\begin{matrix}AM=R\\AN=IN=IM=r\end{matrix}\right.\)
Áp dụng Pitago: \(AI=\sqrt{AN^2+IN^2}=r\sqrt{2}\)
Mà \(AI+IM=R\Rightarrow r\sqrt{2}+r=R\)
\(\Rightarrow r\left(\sqrt{2}+1\right)=R\Rightarrow\frac{R}{r}=1+\sqrt{2}\)
\(F\left(x\right)=sin\left(2\pi-\frac{\pi}{2}+x\right)+cos\left(14\pi-\frac{\pi}{2}-x\right)+sin\left(2x+\pi+x\right)-cos\left(6\pi+\pi-x\right)\)
\(=-sin\left(\frac{\pi}{2}-x\right)+cos\left(\frac{\pi}{2}+x\right)+sin\left(\pi+x\right)-cos\left(\pi-x\right)\)
\(=-cosx-sinx-sinx+cosx=-2sinx\)
b/ \(F\left(x\right)=-1\Leftrightarrow-2sinx=-1\)
\(\Rightarrow sinx=\frac{1}{2}\Rightarrow x=30^0\)
Gọi O là tâm đa giác, giả sử A, B là hai đỉnh kề nhau của đa giác
Ta có A O B ^ = 360 n ° . Diện tích đa giác đều bằng.
S = n S O A B = n . 1 2 O A . O B . sin A O B ^ = 1 2 n R 2 . sin 360 n °
ĐÁP ÁN A