K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

\(D=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+..........+\dfrac{1}{256}+\dfrac{1}{512}\)

\(\Leftrightarrow2D=1+\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{256}\)

\(\Leftrightarrow2D-D=\left(1+\dfrac{1}{2}+.....+\dfrac{1}{256}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{512}\right)\)

\(\Leftrightarrow D=1-\dfrac{1}{512}=\dfrac{511}{512}\)

31 tháng 8 2021

Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}+\dfrac{1}{512}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}\)

\(\Rightarrow A=2A-A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{256}-\dfrac{1}{512}\)

\(\Rightarrow A=1-\dfrac{1}{512}=\dfrac{511}{512}\)

31 tháng 8 2021

Đặt A=12+14+18+...+1256+1512A=12+14+18+...+1256+1512

⇒2A=1+12+14+...+1128+1256⇒2A=1+12+14+...+1128+1256

⇒A=2A−A=1+12+14+...+1128+1256−12−14−18−...−1256−1512⇒A=2A−A=1+12+14+...+1128+1256−12−14−18−...−1256−1512

⇒A=1−1512=511512

2 tháng 4 2020

\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{512}-\frac{1}{1024}\)

\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^9}-\frac{1}{2^{10}}\)

\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^8}-\frac{1}{2^9}\)

\(3A=1-\frac{1}{2^{10}}< 1\)

\(\Rightarrow A< \frac{1}{3}\)

12 tháng 3 2020

Ta đặt:

S=1+2+4+8+...+256+512

S=20+21+22+23+...+28+29

2S=(20+21+22+23+...+28+29).2

2S=20.2+21.2+22.2+23.2+...+28.2+29.2

2S=21+22+23+...+28+29+210

Do đó:

2S-S=(21+22+23+...+28+29+210)-(20+21+22+23+...+28+29)

=>S=210-20

S=1024-1=1023

6 tháng 7 2019

#)Giải :

\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{512}\)

\(=\frac{255}{512}\)

Lời giải 

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{512}\)

\(=\frac{255}{512}\)

16 tháng 10 2019

=4949/238784

10 tháng 5 2017

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)

BẤM ĐÚNG NHÉ

8 tháng 6 2017

1023/1024 nhé bạn

13 tháng 8 2018

Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512

2A = 1/2 x 2 + 1/4 x 2 + 1/8 x 2 + 1/16 x 2 + 1/32 x 2 + 1/64 x 2 + 1/128 x 2 + 1/256 x 2 + 1/512 x 2

2A = 1 + 1/2 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256

2A - A = ( 1 + 1/2 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 ) - ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 )

A = 1 - 1/512

A = 511/512

5 tháng 8 2017

\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+..........+\dfrac{1}{256}+\dfrac{1}{512}=?\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+...+\dfrac{1}{256}-\dfrac{1}{512}-\dfrac{1}{512}\)

\(=1-\dfrac{1}{512}\)

\(=\dfrac{511}{512}\)

Vậy \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+.........+\dfrac{1}{256}+\dfrac{1}{512}=\dfrac{511}{512}\)

5 tháng 8 2017

Bài bạn trên cách trình bày mk ko hiểu lắm! mk làm lại nhé!

Đặt :

\(S=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...........+\dfrac{1}{256}+\dfrac{1}{512}\)

\(\Leftrightarrow S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.........+\dfrac{1}{2^8}+\dfrac{1}{2^9}\)

\(\Leftrightarrow2S=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^9}\right)\)

\(\Leftrightarrow2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^8}\)

\(\Leftrightarrow2S-S=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+......+\dfrac{1}{2^9}\right)\)

\(\Leftrightarrow S=1-\dfrac{1}{2^9}\)

\(\Leftrightarrow S=1-\dfrac{1}{512}=\dfrac{511}{512}\)

7 tháng 7 2016

Nhờ mn làm giùm mình vs nhé c.ơn nhìu ạ

7 tháng 7 2016

a) Đặt A=1/2 + 1/4 + 1/8 +...+ 1/256 + 1/512

\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^8}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

\(A=1-\frac{1}{2^9}\)

b)\(\frac{a}{b}+\frac{4}{6}+\frac{2}{10}=\frac{3}{2}\)

\(\Rightarrow\frac{a}{b}+\frac{13}{15}=\frac{3}{2}\)

\(\Rightarrow\frac{a}{b}=\frac{19}{30}\)

\(\frac{4}{5}:\frac{a}{b}-\frac{6}{5}=\frac{3}{10}\)

\(\Rightarrow\frac{4}{5}:\frac{a}{b}=\frac{3}{2}\)

\(\Rightarrow\frac{a}{b}=\frac{8}{15}\)