Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)
a: (d) vuông góc (d1)
=>a*(-1/2)=-1
=>a=2
=>(d): y=2x+b
Thay x=-2 và y=5 vào (d), ta được:
b-4=5
=>b=9
b:
Sửa đề: (d1): y=-3x+4
Tọa độ giao của (d2) và (d3) là:
3x-7/2=2x-3 và y=2x-3
=>x=1/2 và y=1-3=-2
(d)//(d1)
=>(d): y=-3x+b
Thay x=1/2 và y=-2 vào (d), ta được:
b-3/2=-2
=>b=1/2
=>y=-3x+1/2
Bài 2:
a: (d): y=ax+b
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\a\cdot0+b=3\sqrt{2}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\sqrt{2}+1\\a=\dfrac{1-b}{\sqrt{2}}=\dfrac{1-3\sqrt{2}-1}{\sqrt{2}}=-3\end{matrix}\right.\)
b: Tọa độ giao của (d1) và (d2) là:
2/5x+1=-x+4 và y=-x+4
=>7/5x=3và y=-x+4
=>x=15/7 và y=-15/7+4=13/7
Vì (d) đi qua B(15/7;13/7) và C(1/2;-1/4)
nên ta có hệ:
15/7a+b=13/7 và 1/2a+b=-1/4
=>a=59/46; b=-41/46
Ta biết đổi lại thành \(y\left(2m-2\right)=\left(m+3\right)-\left(m-1\right)x\)
a/ Để đths song song với (d) : \(y=\frac{3x-1}{2}=\frac{3}{2}x-\frac{1}{2}\)thì \(\begin{cases}2m-2\ne0\\m+3\ne-\frac{1}{2}\\-\left(m-1\right)=\frac{3}{2}\end{cases}\) \(\Leftrightarrow m=-\frac{1}{2}\) (thỏa mãn)
Còn lại tương tự.
b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)
Vì đths đi qua N nên \(\left(m-1\right)x_0+\left(2m-2\right)y_0=m+3\Leftrightarrow m\left(x_0+2y_0-1\right)-\left(x_0+2y_0+3\right)=0\)
Để N là điểm cố định thỏa mãn thì
\(\begin{cases}x_0+2y_0-1=0\\x_0+2y_0+3=0\end{cases}\) . Hệ này vô nghiệm.
Vậy không có điểm cố định.
a.
\(-2y+x-5=0\Leftrightarrow2y=x-5\Leftrightarrow y=\dfrac{1}{2}x-\dfrac{5}{2}\)
Hai đường thẳng cắt nhau khi:
\(m-2\ne\dfrac{1}{2}\Leftrightarrow m\ne\dfrac{5}{2}\)
b.
\(3x+y=1\Leftrightarrow y=-3x+1\)
Hai đường thẳng song song khi: \(\left\{{}\begin{matrix}m-2=-3\\n\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\n\ne1\end{matrix}\right.\)
c.
Hai đường thẳng trùng nhau khi:
\(\left\{{}\begin{matrix}m-2=2\\n=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=4\\n=3\end{matrix}\right.\)
a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m^2+2m=-1\\m+1\ne-2023\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2+2m+1=0\\m\ne-2024\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m+1\right)^2=0\\m\ne-2024\end{matrix}\right.\)
=>(m+1)2=0
=>m+1=0
=>m=-1
b: Thay x=0 và y=2024 vào (d), ta được:
\(0\left(m^2+2m\right)+m+1=2024\)
=>m+1=2024
=>m=2023
c: Tọa độ giao điểm của (d2) và (d3) là:
\(\left\{{}\begin{matrix}x-2=-4x+3\\y=x-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=5\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1-2=-1\end{matrix}\right.\)
Thay x=1 và y=-1 vào (d), ta được:
\(1\left(m^2+2m\right)+m+1=-1\)
=>\(m^2+3m+2=0\)
=>(m+2)(m+1)=0
=>\(\left[{}\begin{matrix}m+2=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=-1\end{matrix}\right.\)