Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m=1\) pt có nghiệm \(x=-\frac{2}{3}\)
Với \(m\ne1\Rightarrow\Delta'=\left(2m+1\right)^2-\left(1-m\right)\left(3m+1\right)=7m^2+2m\)
a/ Để pt \(f\left(x\right)=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\7m^2+2m< 0\end{matrix}\right.\) \(\Rightarrow-\frac{2}{7}< m< 0\)
b/Để \(f\left(x\right)< 0\) vô nghiệm \(\Leftrightarrow f\left(x\right)\ge0\) đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}1-m>0\\7m^2+2m\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 1\\-\frac{2}{7}\le m\le0\end{matrix}\right.\) \(\Rightarrow-\frac{2}{7}\le m\le0\)
c/ Để \(f\left(x\right)\le0\) có vô số nghiệm
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\7m^2+2m>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=1\\\left[{}\begin{matrix}m< -\frac{2}{7}\\m>0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -\frac{2}{7}\\m>0\end{matrix}\right.\)
Lưu ý: phân biệt bất phương trình có vô số nghiệm và nghiệm đúng với mọi x. Muốn vô số nghiệm thì chỉ cần BPT có 1 khoảng nghiệm nào đó là đủ.
Câu 1:
ĐKXĐ: x>=3
\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)
=>x-3=(2x-m)^2
=>4x^2-4xm+m^2=x-3
=>4x^2-x(4m-1)+m^2+3=0
Δ=(4m-1)^2-4*4*(m^2+3)
=16m^2-8m+1-16m^2-48
=-8m-47
Để phương trình có nghiệm thì -8m-47>=0
=>m<=-47/8
Câu 1 : a/Δ Δ = (m+2)2 - 4(-1)(-4) = m2 +2m -12
ycbt <=> Δ > 0 <=> m2 +2m-12 > 0
<=> m < -1-\(\sqrt{13}\) ; m > -1+\(\sqrt{13}\)
Vậy giá trị cần tìm m ∈ (-∞; -1-\(\sqrt{13}\) ) U (-1+\(\sqrt{13}\) ; +∞)
b/ Δ = m2 +2m-12
ycbt <=> Δ < 0 <=> m2 +2m-12 < 0
<=> -1-\(\sqrt{13}\)<m< -1+\(\sqrt{13}\)
Câu 2 .
a/ Thay m=2 vào bpt ta được : 2x2+(2-1)x+1-2 >0
<=> 2x2 + x -1 > 0 <=> x < -1 ; x > \(\frac{1}{2}\)
1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:
\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow a\ge\frac{1}{2}\)
2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)
3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)
4, Nếu m=0 => f(x)=-2x-1<0 (loại)
Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)