D B C A E AD=BA; AC=AE Cho tam giác ABC, trên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
27 tháng 11 2020

a.Dễ thấy \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=\widehat{BAC}+\widehat{BAD}=\widehat{CAD}\)

mà có \(\hept{\begin{cases}AB=AD\\AC=AE\end{cases}\Rightarrow\Delta BAE=\Delta DAC\left(c.g.c\right)}\)

vậy BE=AD.

b.Gọi H là giao điểm của AB và CD ta có

\(\widehat{BIC}=\widehat{IBH}+\widehat{BHI}\)( góc ngoài tam giác )

         \(=\widehat{HDA}+\widehat{DHA}\)( 1 cặp do hai tam giác bằng nhau cmt , một cặp bằng nhau do đối điỉnh)

           \(=180^0-\widehat{HAD}=180^0-60^0=120^0\)  vậy ta có dpcm

21 tháng 3 2020

A B C x D E y K M

HD : xét 2 góc DAC và góc BAE

    ^DAB+^BAC=^DAC

   ^CAE+^BAC=^BAE

   ^DAB=^CAE=90o

=> ^DAC=^BAE

sau đó cm \(\Delta DAC=\Delta BAE\)=> câu a

b) cm DKE =90o

2 câu c ; d dễ tự làm!

6 tháng 8 2021

Vẽ  đường cao AH. Kéo dài AH cắt DE tại G

Góc DAG + góc BAH=\(180^0\)( Vì góc DAB=90 độ )

Góc BAH + góc ABH=\(180^0\)( Vì \(\Delta ABH\)vuông tại H )

\(\Rightarrow\)Góc DAG = góc ABH ( Vì cùng phụ với góc BAH )

Tương từ ta có :

Góc GAE = góc ACH ( Vì cùng phụ với góc HAC )

Mà góc BAC = \(180^0\)- ABH - ACH , góc DAE = DAG + GAE = ABH + ACH

\(\Rightarrow\)DAE + BAC =\(180^0\)-  ABH - ACH + ABH + ACH = \(180^0\)

A C B H E D G

6 tháng 8 2021

Hình của tôi hơi xấu nha mong thông cảm

13 tháng 3 2019

hỏi chị google nha

13 tháng 3 2019

tao biet nhung tao khong lam ho dau

LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ 

Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)

Xét tam giác MAB và tam giác MAC 

     MB=MC(tam giác MBC đều)

     Chung MA

     AB=AC(tam giác ABC cân tại A)

=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA

=> góc BMA=30 độ

Xét tam giác BMA và tam giác BCD 

     góc BMA=BCD(=30)

     BM=BC(tam giác MBC đều)

     goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )

=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40

=> BAD=(180-40)/2=70

     

Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)

Xét tam giác BIA và tam giác CIA

     AB=AC ( ABC cân tại A)

     ABI=ACI(=10)

     BI=CI(do BIC đều)

=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20

Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)

Do đó BAI=BDC hay BDC=20

30 tháng 7 2017

A M B C N D x y

a) Vì \(\widehat{AMx}=\widehat{B}\), hai góc này ở vị trí đồng vị nên Mx // BC.

Giả sử Mx không cắt AC. Suy ra Mx // AC. Mx // AC, Mx // BC nên AC // BC(mâu thuẫn với giả thiết ABC là tam giác). Vậy Mx cắt AC

b) Vì \(\widehat{CNy}=\widehat{C}\), hai góc này ở vị trí so le trong nên Ny // BC.

Ny // BC, Mx // BC nên Mx // Ny.

Câu 8:

a) Tính \(\widehat{ACB}\)

Xét ΔABC có

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)(định lí tổng ba góc trong một tam giác)

hay \(\widehat{ACB}=180^0-\widehat{BAC}-\widehat{ABC}=180^0-50^0-70^0=60^0\)

Vậy: \(\widehat{ACB}=60^0\)

b)

*Tính \(\widehat{AMC}\)

Ta có: CM là tia phân giác của \(\widehat{ACB}\)(gt)

\(\widehat{ACM}=\frac{\widehat{ACB}}{2}=\frac{60^0}{2}=30^0\)

Xét ΔACM có

\(\widehat{A}+\widehat{CMA}+\widehat{ACM}=180^0\)(định lí tổng ba góc trong một tam giác)

hay \(\widehat{AMC}=180^0-\widehat{A}-\widehat{ACM}=180^0-50^0-30^0=100^0\)

Vậy: \(\widehat{AMC}=100^0\)

*Tính \(\widehat{BMC}\)

Ta có: \(\widehat{AMC}+\widehat{BMC}=180^0\)(hai góc kề bù)

hay \(\widehat{BMC}=180^0-\widehat{AMC}=180^0-100^0=80^0\)

Vậy: \(\widehat{BMC}=80^0\)

Câu 9:

a) Chứng minh ΔABE=ΔACD

Xét ΔABE và ΔACD có

AE=AD(gt)

\(\widehat{A}\) chung

AB=AC(ΔABC cân tại A)

Do đó:ΔABE=ΔACD(c-g-c)

b) Chứng minh BE=CD

Ta có: ΔABE=ΔACD(cmt)

⇒BE=CD(hai cạnh tương ứng)

c) Chứng minh DE//BC

Xét ΔADE có AD=AE(gt)

nên ΔADE cân tại A(định nghĩa tam giác cân)

\(\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔADE cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{ABC}\)

\(\widehat{ADE}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên DE//BC(dấu hiệu nhận biết hai đường thẳng song song)(đpcm)

Câu 10:

image

a) Xét ΔADC và ΔABE có

AD=AB(gt)

\(\widehat{DAC}=\widehat{BAE}\left(=90^0+\widehat{BAC}\right)\)

AC=AE(gt)

Do đó: ΔADC=ΔABE(c-g-c)

⇒CD=BE(hai cạnh tương ứng)

Gọi F là giao điểm của CD và BE

Gọi G là giao điểm của CD và AB

Xét ΔGBF có

\(\widehat{G_1}+\widehat{B_1}+\widehat{F_1}=180^0\)(định lí tổng ba góc trong một tam giác)

hay \(\widehat{F_1}=180^0-\left(\widehat{G_1}+\widehat{B_1}\right)\)

\(\widehat{G_1}=\widehat{G_2}\)(hai góc đối đỉnh)

\(\widehat{B_1}=\widehat{ADC}\)(ΔADC=ΔABE)

nên \(\widehat{G_1}+\widehat{B_1}=\widehat{G_2}+\widehat{ADC}=180^0-\widehat{DAB}=180^0-90^0=90^0\)

\(F_1=180^0-90^0=90^0\)

⇒CD⊥BE(đpcm)

b) Xét ΔADI vuông tại I và ΔBAH vuông tại H có

AD=BA(gt)

\(\widehat{IAD}=\widehat{HBA}\left(=90^0-\widehat{BAH}\right)\)

Do đó: ΔADI=ΔBAH(cạnh huyền-góc nhọn)

⇒ID=HA(hai cạnh tương ứng)(1)

c) Xét ΔAHC vuông tại H và ΔEKA vuông tại K có

AC=EA(gt)

\(\widehat{HCA}=\widehat{KAE}\left(=90^0-\widehat{HAC}\right)\)

Do đó: ΔAHC=ΔEKA(cạnh huyền-góc nhọn)

⇒AH=EK(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra ID=EK

Gọi J là giao điểm của DE và IK

\(\widehat{KJE}=\widehat{IJD}\)(hai góc đối đỉnh)

Xét ΔKJE vuông tại K và ΔIJD vuông tại I có

EK=ID(cmt)

\(\widehat{KJE}=\widehat{IJD}\)(cmt)

Do đó: ΔKJE=ΔIJD(cạnh góc vuông-góc nhọn kề)

⇒KJ=IJ và EJ=DJ(các cặp cạnh tương ứng)

Ta có KJ=IJ(cmt)

mà J nằm giữa I và K

nên J là trung điểm của IK(a)

Ta có: EJ=DJ(cmt)

mà J nằm giữa E và D

nên J là trung điểm của ED(b)

Từ (a) và (b) suy ra IK và ED có trung điểm chung là J

7 tháng 3 2020

oengu thế ngu như con chó

11 tháng 1 2018

góc A < 900 nha m,n

13 tháng 1 2018

ban co can minh ve hinh ko

17 tháng 11 2016

ko biết