Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé
Bài 1:
a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)
Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
CM : a = b = c
Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
vì \(a+b+c\ne0\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)
Do đó : \(a=b=c\).
Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)
Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)
\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 4:
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
b: ta có: ABDC là hình bình hành
nên AB//DC
c: Xét hình bình hành ABDC có AB=AC
nên ABDC là hình thoi
=>CB là tia phân giác của góc ACD
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2: ta thấy A và B ở vị trí trong cùng phía , A + B = 180 độ =>a//b(1)
Ta lại thấy B , C ở vị trí đồng vị , B=C=70 độ =>b//c(2)
Từ 1,2 =>a//b//c
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2)
Ta có \(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
Xét \(\frac{a}{b}< \frac{a+c}{b+d}\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow ab+ad< ab+bc\)
\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )
Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Xét \(\frac{a+c}{b+d}< \frac{c}{d}\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )
Vậy \(\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)
Đặt \(B=2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\)
\(=\left(2013-2013\right)\left(\frac{2013}{2}+1\right)+...+\left(\frac{1}{2014}+1\right)\)
\(=0+\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}\)
\(=2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)
Thay B vào A ta được:
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)
\(=\frac{1}{2015}\)
Vậy \(A=\frac{1}{2015}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a )
Xét : \(\Delta ABHva\Delta ADH,co:\)
\(\widehat{H_1}=\widehat{H_2}=90^o\left(gt\right)\)
BH = HD ( gt )
AH là cạnh chung
Do do : \(\Delta ABH=\Delta ADH\left(c-g-c\right)\)
b )
Ta có : \(\Delta ABD\) là tam giác đều ( cmt )
= > \(\widehat{BAD}=60^o\) ( trong tam giác đều mỗi góc bằng 60o )
Ta có : \(\widehat{CAD}=\widehat{BAC}-\widehat{BAD}=90^o-60^o=30^o\) ( tia AD nằm giữa 2 tia AB và AC )
Hay : \(\widehat{EAD}=30^o\left(E\in AC\right)\)
Ta có :\(\widehat{ADH}=60^o\) ( \(\Delta ABD\) là tam giác đều )
Ta có : \(\widehat{HAD}=\widehat{H_2}-\widehat{ADH}=90^o-60^o=30^o\)
Ta có : \(AH\perp BC\) và \(ED\perp BC\)
= > \(AH//ED\) ( vì cùng vuông góc với BC )
=> \(\widehat{HAD}=\widehat{ADE}=30^o\) ( 2 góc so le trong của AH//ED )
=> \(\Delta AED\) là tam giác cân , và cân tại E ( vì có 2 góc ở đáy bằng nhau ( \(\widehat{HAD}=\widehat{ADE}=30^o\)) )
c ) mình không biết chứng minh AH = HF = FC nha , mình chỉ chứng minh \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) thôi nha :
Ta có : \(\Delta ABC\) vuông tại A và AH là đường cao ( gt )
= > \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) ( hệ thức lượng trong tam giác vuông )
Hình mình vẽ hơi xấu , thông cảm nha
HỌC TỐT !!!
a) Tam giác ABC có AH là đường cao đồng thời là trung tuyến ( BH=HD)
\(\rightarrow\) tam giác ABD cân tại A
Mà \(\widehat{B}\) = 60 độ \(\rightarrow\) tam giác ABD đều
b) Tam giác ABD đều nên \(\widehat{ADB}\) = \(\widehat{BAD}\) = 60 độ
\(\rightarrow\) \(\widehat{ADE}\) = \(\widehat{HDE}\) - \(\widehat{ADB}\) = 30 độ
Tương tự có \(\widehat{DAE}\) = 30độ
\(\Rightarrow\) Tam giác ADE cân tại E
c1) Xét tam giác AHC và tam giác CFA
\(\widehat{ACF}\) = \(\widehat{CAF}\) = 30độ
AC chung
\(\rightarrow\) tam giác bằng nhau ( cạnh huyền - góc nhọn)
\(\rightarrow\) AH = FC
Ta có \(\widehat{BAD}\) = 60 độ và \(\widehat{BAH}\) = 30 độ
\(\rightarrow \) \(\widehat{HAD}\) = 30 độ hay \(\widehat{HAF}\) = 30 độ
____Phần còn lại cm tam giác HAF cân là ra
Mk bận chút việc nên ms làm đến đây thui nka ~
ai mà biết đc
ư