D 1 2 3 4 A 1 60 d 1 110 C B 1 b

a)Chứng  minh a//b             ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé

Bài 1:

a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)

Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

CM : a = b = c

10 tháng 7 2019

Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

vì \(a+b+c\ne0\)

\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)

Do đó : \(a=b=c\).

Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)

Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)

\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)

Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)

15 tháng 10 2016

minh muon chet qua troi!!!!!!

15 tháng 10 2016

mk chư học đến căn bấc 2

các bạn giúp bài kiểm tra này nhé:Phần Trắc nghiệm (3đ)Câu 1. Cho hàm số y = f(x) = 2x2 + 3. Khi đó:A. f(0) = 5 B. f(1) = 7 C. f(-1) = 1 D. f(-2) = 11Câu 2. Giá trị của biểu thức: \(\frac{-5}{37}+\frac{-4}{13}+\frac{5}{37}+\frac{-9}{13}\) bằng:A. 1 B. -1 C. 0 D. 2Câu 3. Chọn câu trả lời đúng nhất: \(\sqrt{0,04}\) bằng:A. 0,02 B. 0,02 và -0,02 C....
Đọc tiếp

các bạn giúp bài kiểm tra này nhé:

Phần Trắc nghiệm (3đ)

Câu 1. Cho hàm số y = f(x) = 2x2 + 3. Khi đó:

A. f(0) = 5 B. f(1) = 7 C. f(-1) = 1 D. f(-2) = 11

Câu 2. Giá trị của biểu thức: \(\frac{-5}{37}+\frac{-4}{13}+\frac{5}{37}+\frac{-9}{13}\) bằng:

A. 1 B. -1 C. 0 D. 2

Câu 3. Chọn câu trả lời đúng nhất: \(\sqrt{0,04}\) bằng:

A. 0,02 B. 0,02 và -0,02 C. 0,2 và -0,2 D. 0,2

Câu 4. Chọn câu trả lời đúng nhất:

Vẽ 4 đường thẳng a, b, c, d sao cho \(a \bot d; b \bot d; c \bot d.\) Ta có các đường thẳng song song với nhau là:

A. \(a \bot b\) B. \(a \bot c\) C. a // b // c D. Cả A, B, C đều sai

Câu 5. Trong tam giác ABC có:

A. \(A ̂+B ̂+C ̂=180° \) B. \(A ̂+B ̂+C ̂=90° \)

C. \(A ̂+B ̂+C ̂<180°\) D. \(A ̂+B ̂+C ̂>180°\)

Câu 6. Cho ΔABC = ΔDEF, biết \(B ̂=70°\); \(C ̂=50°\); EF = 3cm. Khi đó ta có:

A. \(D ̂=50°;BC=2cm\) B. \(D ̂=60°;BC=3cm\)

C. \(D ̂=70°;BC=3cm\) D. \(D ̂=80°;BC=5cm\)

Phần Tự luận (7đ)

Bài 1: (1đ) Tìm x, biết:

a) \(x:8,5=0,69:\left(-1,15\right)\) b) \(\left(\frac{2x}{3}-3\right):\left(-10\right)=\frac{2}{5}\)

Bài 2: (1,5đ)

a) Vẽ đồ thị của hàm số y= -3x

b) Điểm nào sau đây thuộc hay không thuộc đồ thị của hàm số trên?

E(2; -3) , F(-1; 3)

Bài 3. (1,5đ)

Tính độ dài các cạnh của một tam giác biết chu vi là 22 và các cạnh tam giác tỉ lệ với các số 2; 4; 5.

Bài 4. (3đ)

Cho ΔABC có AB = AC. M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM = MD.

a) Chứng minh AB = DC.

b) Chứng minh AB // DC.

c) Chứng minh CB là tia phân giác của GÓC ACD.

------------------------------HẾT ------------------------------

1

Câu 4: 

a: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB=DC
b: ta có: ABDC là hình bình hành

nên AB//DC

c: Xét hình bình hành ABDC có AB=AC

nên ABDC là hình thoi

=>CB là tia phân giác của góc ACD

8 tháng 11 2021

Bài 2: ta thấy A và B ở vị trí trong cùng phía , A + B = 180 độ =>a//b(1)

Ta lại thấy B , C ở vị trí đồng vị , B=C=70 độ =>b//c(2)

Từ 1,2 =>a//b//c

9 tháng 1 2017

Bài 2)

Ta có \(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

Xét \(\frac{a}{b}< \frac{a+c}{b+d}\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow ab+ad< ab+bc\)

\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )

Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\) (1)

Xét \(\frac{a+c}{b+d}< \frac{c}{d}\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )

Vậy \(\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1) (2)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

10 tháng 1 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)

Đặt \(B=2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\)

\(=\left(2013-2013\right)\left(\frac{2013}{2}+1\right)+...+\left(\frac{1}{2014}+1\right)\)

\(=0+\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}\)

\(=2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)

Thay B vào A ta được:

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)

\(=\frac{1}{2015}\)

Vậy \(A=\frac{1}{2015}\)

29 tháng 5 2018

a )

Xét : \(\Delta ABHva\Delta ADH,co:\)

\(\widehat{H_1}=\widehat{H_2}=90^o\left(gt\right)\)

BH = HD ( gt )

AH là cạnh chung 

Do do : \(\Delta ABH=\Delta ADH\left(c-g-c\right)\)

b ) 

Ta có : \(\Delta ABD\) là tam giác đều ( cmt ) 

= > \(\widehat{BAD}=60^o\) ( trong tam giác đều mỗi góc bằng 60o ) 

Ta có : \(\widehat{CAD}=\widehat{BAC}-\widehat{BAD}=90^o-60^o=30^o\) ( tia AD nằm giữa 2 tia AB và AC )

Hay  :  \(\widehat{EAD}=30^o\left(E\in AC\right)\)  

Ta có :\(\widehat{ADH}=60^o\) ( \(\Delta ABD\) là tam giác đều ) 

Ta có : \(\widehat{HAD}=\widehat{H_2}-\widehat{ADH}=90^o-60^o=30^o\)

Ta có : \(AH\perp BC\) và  \(ED\perp BC\)

= > \(AH//ED\) ( vì cùng vuông góc với BC ) 

=> \(\widehat{HAD}=\widehat{ADE}=30^o\) ( 2 góc so le trong của AH//ED ) 

=> \(\Delta AED\) là tam giác cân , và cân tại E ( vì có 2 góc ở đáy bằng nhau ( \(\widehat{HAD}=\widehat{ADE}=30^o\)) ) 

c ) mình không biết chứng minh AH = HF = FC  nha , mình chỉ chứng minh \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) thôi nha :

Ta có : \(\Delta ABC\) vuông tại A  và AH là đường cao  ( gt ) 

= > \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)  ( hệ thức lượng trong tam giác vuông ) 

 Hình mình vẽ hơi xấu , thông cảm nha 

HỌC TỐT !!! 

  

29 tháng 5 2018

a) Tam giác ABC có AH là đường cao đồng thời là trung tuyến ( BH=HD)

\(\rightarrow\) tam giác ABD cân tại A

Mà  \(\widehat{B}\) = 60 độ \(\rightarrow\) tam giác ABD đều

b) Tam giác ABD đều nên \(\widehat{ADB}\) = \(\widehat{BAD}\) = 60 độ

\(\rightarrow\) \(\widehat{ADE}\) = \(\widehat{HDE}\) - \(\widehat{ADB}\) = 30 độ

Tương tự có \(\widehat{DAE}\) = 30độ

\(\Rightarrow\) Tam giác ADE cân tại E

c1) Xét tam giác AHC và tam giác CFA

           \(\widehat{ACF}\) = \(\widehat{CAF}\) = 30độ

           AC chung

\(\rightarrow\) tam giác bằng nhau ( cạnh huyền - góc nhọn)

\(\rightarrow\) AH = FC

Ta có \(\widehat{BAD}\) = 60 độ và \(\widehat{BAH}\) = 30 độ

\(\rightarrow \) \(\widehat{HAD}\) = 30 độ hay \(\widehat{HAF}\) = 30 độ

 ____Phần còn lại cm tam giác HAF cân là ra 

Mk bận chút việc nên ms làm đến đây thui nka ~