\(P\left(y\right)=-y^8+y^5-y^2+y-3\)

tìm x biết 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

Ta có : \(9^{x-1}=\frac{1}{9}\)

=> \(9^{x-1}=9^{-1}\)

=> x - 1 = -1

=> x = 0 

ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi 

=> 

18 tháng 6 2017

Cảm ơn bạn nha. Còn mấy phần kia bạn biết làm không?

21 tháng 10 2016

Ta có : \(M=\frac{8x^6-27}{4x^4+6x^2+9}=\frac{\left(2x^2\right)^3-3^3}{\left(2x^2\right)^2+\left(2x^2\right).3+3^2}\)

\(=\frac{\left(2x^2-3\right)\left[\left(2x^2\right)^2+2x^2.3+3^2\right]}{\left(2x^2\right)^2+2x^2.3+3^2}=2x^2-3\)

\(N=\frac{y^4-1}{y^3+y^2+y+1}=\frac{\left(y-1\right)\left(y^3+y^2+y+1\right)}{y^3+y^2+y+1}=y-1\)

Vậy \(\frac{M}{N}=\frac{2x^3-3}{y-1}\)

Khi \(x=8,y=251\) , ta có :

\(\frac{M}{N}=\frac{2.8^3-3}{251-1}=\frac{1}{2}\)

17 tháng 3 2018

Mình sửa lại chút nhé. tìm x,  y là các số hữu tỉ

1 tháng 12 2019

#Tiểu_Tỷ_Tỷ⁀ᶜᵘᵗᵉ             

Đợi đến 9 giờ nha !

1 tháng 12 2019

                                                                              Bài giải

b, \(x-5+\left|x-3\right|=4\)

\(\left|x-3\right|=4-x+5\)

\(\Rightarrow\orbr{\begin{cases}x-3=-4+x-5\\x-3=4-x+5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-x=-4-5+3\\x+x=4+5+3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ne-6\text{ ( loại ) }\\2x=12\end{cases}}\)\(\Rightarrow\text{ }x=6\)

c, \(\sqrt{\left(x+7\right)^2}+\left(x^2-49\right)^{2012}=0\)

\(\left(x+7\right)+\left(x^2-49\right)^{2012}=0\)

\(\Rightarrow\hept{\begin{cases}x+7=0\\\left(x^2-49\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2-49=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2=49\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x=\pm7\end{cases}}\)

\(\)\(\Rightarrow\text{ }x=-7\)

d, \(2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}\le0\)

\(\text{Vì }\hept{\begin{cases}2\left|3-x\right|^{2017}\ge0\\\left(y-x+1\right)^{2016}\ge0\end{cases}}\) \(\Rightarrow\text{ Chỉ xảy ra trường hợp }2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}=0\)

\(\Rightarrow\hept{\begin{cases}2\left|3-x\right|^{2017}=0\\\left(y-x+1\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|3-x\right|^{2017}=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3-x=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y-3+1=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

17 tháng 3 2019

Thứ nhất : là bài 3 bạn ghi đề bị thiếu . 

Thứ hai : là mình đã tốn thời gian giải cho bạn rồi nên đừng tiếc thời gian để k cho mình nếu mình đúng

Thứ 3 : mong các thành phần chuyên sao chép lời giải người khác và đăng lên , thậm chí là giống như đúc đừng sao chép bài của mình nhé .

Giải : 

1, Ta có : \(y\sqrt{x}-3y=\sqrt{x}+1\Rightarrow y\left(\sqrt{x}-3\right)=\sqrt{x}+1\)

\(\Rightarrow y\left(\sqrt{x}-3\right)-\left(\sqrt{x}+1\right)=0\Rightarrow y\left(\sqrt{x}-3\right)-\sqrt{x}-1=0\)

\(y\left(\sqrt{x-3}\right)-\sqrt{x}+3-4=0\Rightarrow y\left(\sqrt{x-3}\right)-\left(\sqrt{x-3}\right)-4=0\)

\(\left(\sqrt{x}-3\right)\left(y-1\right)-4=0\)

\(\left(\sqrt{x}-3\right)\left(y-1\right)=4\)

Vì y thuộc Z nên y-1 thuộc Z => \(\left(\sqrt{x}-3\right)\in Z\)

Ta có bảng : 

\(\sqrt{x}-3\)\(1\)\(4\)\(-1\)\(-4\)\(2\)\(-2\)
\(y-1\)\(4\)\(1\)\(-4\)\(-1\)\(2\)\(-2\)
\(x\)\(2\)\(\varnothing\)\(\varnothing\)\(\varnothing\)\(\varnothing\)\(1\)

\(y\)

\(5\)\(\varnothing\)\(\varnothing\)\(\varnothing\)\(\varnothing\)\(-1\)

Vậy các cặp x,y thỏa mãn là (2;5) và (1;-1)

2,Ta có \(y\sqrt{x}-\sqrt{x}=1-y\Rightarrow\sqrt{x}\left(y-1\right)+y-1=0\Rightarrow\left(y-1\right)\left(\sqrt{x}+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-1=0\\\sqrt{x}+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x\in\varnothing\end{cases}}}\)

Vậy \(y=1,x\in\varnothing\)

17 tháng 3 2019

Không hẳn là cách khác nhưng cứ xem cho vui=)

1/\(y\left(\sqrt{x}-3\right)=\sqrt{x}+1\Leftrightarrow y=1+\frac{4}{\sqrt{x}-3}\)

Để y nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Bài toán trở về dạng quen thuộc.

2/ \(\sqrt{x}\left(y-1\right)=1-y\)

Với y = 1 thì \(\sqrt{x}.0=0\) (luôn đúng)

Với y khác 1:

\(\sqrt{x}\left(y-1\right)=1-y\Rightarrow\sqrt{x}=\frac{1-y}{y-1}=\frac{-1\left(y-1\right)}{y-1}=-1\)(vô lí vì \(\sqrt{x}\ge0\))

Vậy x tùy ý; y = 1

3/ Thiếu đề.

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D