Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\sqrt{4-x^2}=2+x\sqrt{4-x^2}\).
ĐKXĐ: \(-2\le x\le2\).
Đặt \(\sqrt{4-x^2}=y\ge0\). Ta có \(x^2+y^2=4\Leftrightarrow\left(x+y\right)^2-2xy=4\Leftrightarrow xy=\dfrac{\left(x+y\right)^2-4}{2}\).
\(PT\Leftrightarrow x+y=2+xy\Leftrightarrow x+y=2+\dfrac{\left(x+y\right)^2-4}{2}\Leftrightarrow x+y=\dfrac{\left(x+y\right)^2}{2}\Leftrightarrow\left[{}\begin{matrix}x+y=0\\x+y=2\end{matrix}\right.\).
Với x + y = 0 ta có xy = -2. Do \(y\ge0\Rightarrow x=-\sqrt{2}\left(TMĐK\right)\).
Với x + y = 2 ta có xy = 0. Do đó x = 2 (TMĐK) hoặc x = 0 (TMĐK).
Vậy,..
@Quoc Tran Anh Le CTV có cách nào zoom ảnh không ạ? Ảnh cap trên post bé quá :((
C402:
\(1+2^x=y^2\)
\(\Leftrightarrow2^x=\left(y-1\right)\left(y+1\right)\)
Từ đó ta suy ra \(\left\{{}\begin{matrix}y-1=2^a\\y+1=2^b\end{matrix}\right.\) với \(\left\{{}\begin{matrix}a+b=x\\b>a\ge1\end{matrix}\right.\)
\(\Rightarrow2^b-2^a=y+1-y+1=2\)
\(\Leftrightarrow2^a\left(2^{b-a}-1\right)=2\)
\(\Rightarrow\left\{{}\begin{matrix}2^a=2\\2^{b-a}-1=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b-a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2^1+1=3\\x=1+2=3\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(3;3\right)\) là nghiệm nguyên duy nhất của phương trình.
b)Hệ phương trình tương đương:
\(\begin{array}{l} \left\{ \begin{array}{l} {\left( {xy + x} \right)^2} + 2\left( {xy + y} \right) = 3\\ xy\left( {x + 1} \right)\left( {y + 1} \right) = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {\left( {xy + x} \right)^2} + 2\left( {xy + y} \right) = 3\\ \left( {xy + y} \right)\left( {xy + x} \right) = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {a^2} + 2b = 3\\ ab = 1 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} a = 1,b = 1\\ a = - 2,b = - \dfrac{1}{2} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} xy + x = 1\\ xy + y = 1 \end{array} \right.\\ \left\{ \begin{array}{l} xy + x = - 2\\ xy + y = - \dfrac{1}{2} \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = y = \dfrac{{ - 1 - \sqrt 5 }}{2}\\ x = y = \dfrac{{\sqrt 5 - 1}}{2} \end{array} \right. \end{array}\)
KL:
b)Hệ phương trình tương đương:
{(xy+x)2+2(xy+y)=3xy(x+1)(y+1)=1⇔{(xy+x)2+2(xy+y)=3(xy+y)(xy+x)=1⇔{a2+2b=3ab=1⇔⎡⎣a=1,b=1a=−2,b=−12⇔⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣{xy+x=1xy+y=1⎧⎨⎩xy+x=−2xy+y=−12⇔⎡⎢ ⎢ ⎢⎣x=y=−1−√52x=y=√5−12{(xy+x)2+2(xy+y)=3xy(x+1)(y+1)=1⇔{(xy+x)2+2(xy+y)=3(xy+y)(xy+x)=1⇔{a2+2b=3ab=1⇔[a=1,b=1a=−2,b=−12⇔[{xy+x=1xy+y=1{xy+x=−2xy+y=−12⇔[x=y=−1−52x=y=5−12
KL:
Nhớ up tài liệu lên đây để mọi người cùng tải về nha admin VICE.
Ta có:\( \widehat{BIJ}=\widehat{BAI}+\widehat{ABI}\)
\(=\widehat{IAC}+\widehat{IBC}\) (I là tâm đường tròn nội tiếp tam giác ABC)
Xét (O) : \(\widehat{JAC}=\widehat{JBC}\)
Nên \( \widehat{BIJ}=\widehat{JBC}+\widehat{IBC}=\widehat{IBJ}\)
Suy ra tam giác BIJ cân tại J nên JB=JI
J ∈đường trung trực của BI
Chứng minh tương tự có: JI=JC nên J ∈đường trung trực của IC
Suy ra J là tâm đường tròn ngoại tiếp tam giác BIC
b, Xét O có \(\widehat{JBK} =90^o\)
nên tam giác JBK vuông tại B
BE là đường cao (OB=OC;JB=JC nên OJ trung trực BC)
suy ra \(JB^2=JE.JK\) hay \(JI^2=JE.JK\)
b, Xét (O) có\( \widehat{SBJ}=\widehat{BAJ}=\widehat{JBC} \)(góc tạo bởi tia tt và dây cung và góc nội tiếp cùng chắn cung JB)
suy ra BJ là đường phân giác trong\( \widehat{SBE}\)
\(BJ⊥ BK \)nên BK là đường phân giác ngoài tam giác SBE
suy ra\( \dfrac{SJ}{JE}=\dfrac{SK}{EK}\)
hay \(SJ.EK=SK.JE\)
c, Đặt L là tâm đường tròn bàng tiếp tam giác ABC suy ra A;J;L thẳng hàng
CL phân giác ngoài góc C;CI phân giác ngoài góc C
suy ra
JI=JC nên \(\widehat{JIC}=\widehat{JCI}\)
\( \widehat{JIC}+ \widehat{ILC}=90^o\)
\(\widehat{JCI}+ \widehat{JCL}=90^o\)
nên \(\widehat{ILC}= \widehat{JCL}\)
suy ra JC=JL nên J là trung điểm IL
Có:\( \widehat{ACL}=\widehat{ACI}+90^o\)
\(\widehat{AIB}=\widehat{ACI}+90^o\)
nên \(\widehat{ACL}=\widehat{AIB}\)
Lại có: \(\widehat{LAC}=\widehat{BAI}\)
nên tam giác ABI \(\backsim\) tam giác ALC
suy ra \(AB.AC=AI.AL\)
Có trung tuyến SB SC cát tuyến SDA nên tứ giác ABDC là tứ giác điều hòa với \(AB.DC=BD.AC=\dfrac{1}{2}.AD.BC\)
suy ra \(BD.AC=AD.EC\)
cùng với\( \widehat{BDA}=\widehat{ECA}\)
nên tam giác ABD đồng dạng AEC
suy ra \(AB.AC=AD.AE;\widehat{BAD}=\widehat{EAC}\)
vậy \(AD.AE=AI.AL;\widehat{DAI}=\widehat{LAE}\) (do AJ là phân giác góc A)
từ đây suy ra tam giác ADI\( \backsim\) tam giác ALE
nên \(\widehat{ADI}=\widehat{ALE}\)
mà \( \widehat{ADI}= \widehat{AJM}=\widehat{ALE}\)
nên JM//LE
J là trung điểm IL nên JM đi qua trung điểm IE (đpcm)
Bài 2.
Ta có:a2+b2+c2+2abc+1≥2(ab+bc+ca)
⇔ (a2-2ab+b2)+(c2-2c+1)+(2c+2abc-2bc-2ca)≥0
⇔ (a-b)2+(c-1)2+2c(a-1)(b-1)≥0
Vì a,b,c≥0 ⇒ 2c(a-1)(b-1)≥0
Dấu "=" xảy ra ⇔ a=b=c=1
C25: b5: Sử dụng kĩ thuật Côsi ngược dấu:
Ta có: \(\dfrac{1}{2bc^2+1}=1-\dfrac{2bc^2}{2bc^2+1}\ge1-\dfrac{2bc^2}{3\sqrt[3]{b^2c^4}}=1-\dfrac{2\sqrt[3]{bc^2}}{3}\)
Cmtt ta được: \(\dfrac{1}{2ca^2+1}\ge1-\dfrac{2\sqrt[3]{ca^2}}{3};\dfrac{1}{2ab^2+1}\ge1-\dfrac{2\sqrt[3]{ab^2}}{3}\)
\(\Rightarrow VT\ge1-\dfrac{2\sqrt[3]{bc^2}}{3}+1-\dfrac{2\sqrt[3]{ca^2}}{3}+1-\dfrac{2\sqrt[3]{ab^2}}{3}=3-2\left(\dfrac{\sqrt[3]{bc^2}+\sqrt[3]{ca^2}+\sqrt[3]{ab^2}}{3}\right)\)
Ta có: Theo bđt Côsi:
\(\sqrt[3]{bc^2}=\sqrt[3]{b.c.c}\le\dfrac{b+c+c}{3}=\dfrac{b+2c}{3}\)
\(\sqrt[3]{ca^2}=\sqrt[3]{c.a.a}\le\dfrac{c+a+a}{3}=\dfrac{c+2a}{3}\)
\(\sqrt[3]{ab^2}=\sqrt[3]{a.b.b}\le\dfrac{a+b+c}{3}=\dfrac{a+2b}{3}\)
\(\Rightarrow\sqrt[3]{bc^2}+\sqrt[3]{ca^2}+\sqrt[3]{ab^2}\le\dfrac{b+2c+c+2a+a+2b}{3}=a+b+c=3\)
\(\Rightarrow3-2\left(\dfrac{\sqrt[3]{bc^2}+\sqrt[3]{ca^2}+\sqrt[3]{ab^2}}{3}\right)=1\)
\(\Rightarrow VT\ge1\)
Dấu ''='' xảy ra khi a=b=c=1
em vẽ = chuột nên hơi xấu ạ
No copy