Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\)
\(=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{50^2}\)
\(=\left(1+1+1+...+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)
\(=49.1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)
Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{50^2}< \dfrac{1}{49.50}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}=\dfrac{49}{50}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>-1\)
\(\Rightarrow B=49.1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1=48\)
\(\Rightarrow\) B > 48 (đpcm)
\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{49.51}{50^2}\)
\(=\frac{2.3....49}{3.4....50}.\frac{4.5....51}{3.4....50}\)
\(=\frac{2}{50}.\frac{17}{1}\)
\(=\frac{17}{25}\)
Ta có : \(A=\frac{8}{9}.\frac{15}{16}.....\frac{2499}{2500}\)
\(A=\frac{8.15.....2499}{9.16.....2500}\)
\(A=\frac{\left(2.4\right).\left(3.5\right).....\left(49.51\right)}{\left(3.3\right).\left(4.4\right).....\left(50.50\right)}\)
\(A=\frac{\left(2.3....49\right).\left(4.5....51\right)}{\left(3.4....50\right).\left(3.4.....50\right)}\)
\(A=\frac{2\left(3.4.....49\right).\left(4.5.....50\right).51}{\left(3.4.....49\right).50.3.\left(4.5.....50\right)}\)
\(A=\frac{2.51}{3.50}\)
\(A=\frac{2.17.3}{3.25.2}\)
\(A=\frac{17}{25}\)
\(A=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+\frac{1}{2500}\)
\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+\frac{1}{50^2}=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}
{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)\)(từ 2 đến 50 có 49 số nên có 49 số 1)
\(A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)<49\) (1)
Nhận xét: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{50^2}<\frac{1}{49.50}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-
\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}<1\)=> \(-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}
{4^2}...+\frac{1}{50^2}\right)>-1\)
=> \(A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>49-1=48\)(2)
từ (1)(2) => 48 < A < 49 => A không là số tự nhiên.
Bạn lên mạng có đấy
CM : 3/4 + 8/9 + 15/16 + ...+ 2499/2500 > 48 => 2 + 3/4 + 8/9 + 15/16 + ...+ 2499/2500 > 50 hay H > 50
Tham khảo tại : https://olm.vn/hoi-dap/question/88888.html
Chúc học tốt !!!