Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1030=(103)10=100010<102410=(210)10=2100
2100=231.269=231.26.263=231.64.(29)7=231.64.5127
1031=231.531=231.53.528=231.125.(54)7=231.125.6257
231.64.5127<231.125.6257
=>1030<2100<1031
a) Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1< 2^{101}\)
1030=(103)10=100010
2100=(210)10=102410
Vì:100010<102410 suy ra 1030<2100
Mà 1030<1031(nhiều hơn 1 số 0)
Mà 1030<2100 24 đơn vị
suy ra:1030<2100<1031
a.\(10^{30}=10^{3^{10}}=1000^{10}\)
\(2^{100}=2^{10^{10}}=1024^{10}\)
Vì 1024 > 1000 \(\Rightarrow1024^{10}>1000^{10}\Rightarrow10^{30}
b/ 2^100
= 2^31 . 2^69
= 2^31 . 2^63 . 2^6
= 2^31 . (2^9)^7 . (2^2)^3
= 2^31 . 512^7 . 4^3 (1)
10^31
= 2^31 . 5^31
= 2^31 . 5^28 . 5^3
= 2^31 . (5^4)^7 . 5^3
= 2^31 . 625^7 . 5^3 (2)
Từ (1) và (2), ta có:
2^31 . 512^7 . 4^3 < 2^31 . 312^7 . 5^3 < 2^31 . 625^7 . 5^3.
Hay 2^100 < 10^31.
a/
10^30=1000^10<1024^10=2^100
\(10^{30}=2^{30}.5^{30}\)
\(2^{100}=2^{30}.2^{70}\)
Vì 230 = 230 => Ta so sánh 530 và 270
\(5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(2^{70}=\left(2^7\right)^{10}=128^{10}\)
Vì 12510 < 12810 => 1030 > 2100