Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi các bạn. Đề bài đúng phải là so sánh BD với \(\sqrt{\left(d-r\right)\left(d+r\right)}\)
Gọi E là trung điểm AB \(\Rightarrow OE\perp AB\)
Do D là trung điểm BC \(\Rightarrow BD=\dfrac{1}{2}BC\) (1)
Do C đối xứng A qua M \(\Rightarrow AM=\dfrac{1}{2}AC\)
Do E là trung điểm AB \(\Rightarrow AE=\dfrac{1}{2}AB\)
\(\Rightarrow AM+AE=\dfrac{1}{2}AC+\dfrac{1}{2}AB\Rightarrow ME=\dfrac{1}{2}BC\) (2)
(1);(2) \(\Rightarrow BD=ME\)
Trong tam giác vuông OAE, do OA là cạnh huyền và OE là cạnh góc vuông \(\Rightarrow OE< OA\Rightarrow OE< r\)
Áp dụng định lý Pitago:
\(ME^2=OM^2-OE^2=d^2-OE^2>d^2-r^2\)
\(\Rightarrow BD^2>d^2-r^2\Rightarrow BD>\sqrt{\left(d-r\right)\left(d+r\right)}\)
a: Phải vì góc này tạo bởi tiếp tuyến MA và day cung AB
b: Xét ΔMOA vuông tại A có cosMOA=OA/OM=1/2
=>góc MOA=60 độ
sđ cung AB=2*60=120 độ
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC=MH*MO
a) Xét (O):
D đối xứng với B qua O (gt).
\(\Rightarrow\) O là trung điểm của BD.
\(\Rightarrow\) BD là đường kính của (O).
Xét (O):
BD là đường kính của (O) (cmt).
\(E\in\left(O\right)\left(gt\right).\)
\(\Rightarrow\widehat{BED}=90^o.\)
Xét (O):
AB là tiếp tuyến (gt).
\(\Rightarrow BD\perp AB\) (Tính chất tiếp tuyến).
\(\Rightarrow\widehat{ABD}=90^o.\)
Xét \(\Delta ADB\) và \(\Delta BDE:\)
\(\widehat{ABD}=\widehat{BED}\left(=90^o\right).\\ \widehat{ADB}chung.\)
\(\Rightarrow\dfrac{BD}{DE}=\dfrac{AB}{BE}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow BD.BE=BA.DE.\)
Gọi E là trung điểm AB \(\Rightarrow OE\perp AB\)
Do D là trung điểm BC \(\Rightarrow BD=\dfrac{1}{2}BC\) (1)
Do C đối xứng A qua M \(\Rightarrow AM=\dfrac{1}{2}AC\)
Do E là trung điểm AB \(\Rightarrow AE=\dfrac{1}{2}AB\)
\(\Rightarrow AM+AE=\dfrac{1}{2}AC+\dfrac{1}{2}AB\Rightarrow ME=\dfrac{1}{2}BC\) (2)
(1);(2) \(\Rightarrow BD=ME\)
Trong tam giác vuông OAE, do OA là cạnh huyền và OE là cạnh góc vuông \(\Rightarrow OE< OA\Rightarrow OE< r\)
Áp dụng định lý Pitago:
\(ME^2=OM^2-OE^2=d^2-OE^2>d^2-r^2\)
\(\Rightarrow BD^2>d^2-r^2\Rightarrow BD>\sqrt{\left(d-r\right)\left(d+r\right)}\)