Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Theo đề, ta có hệ phương trình:
200a+b=80000 và 80a+b=56000
=>a=200 và b=40000
=>y=200x+40000
Đặt y=100000
=>200x=600000
=>x=300
b: \(\Leftrightarrow\left\{{}\begin{matrix}x=m-\left(m-1\right)y\\\left(m-1\right)\left[m-\left(m-1\right)y\right]+y=3m-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m-\left(m-1\right)y\\m\left(m-1\right)-y\left(m-1\right)^2+y=3m-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(1-m^2+2m-1\right)=m^2-m-3m+4\\x=m-\left(m-1\right)y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+2m\right)=\left(m-2\right)^2\\x=m-\left(m-1\right)y\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì -m^2+2m<>0
=>m<>0 và m<>2
Khi đó, ta có; \(\left\{{}\begin{matrix}y=\dfrac{\left(m-2\right)^2}{-m\left(m-2\right)}=\dfrac{-m+2}{m}\\x=m+\dfrac{\left(m-1\right)\left(m-2\right)}{m}=\dfrac{2m^2-3m+2}{m}\end{matrix}\right.\)
x+y=3
=>\(\dfrac{2m^2-3m+2-m+2}{m}=3\)
=>2m^2-4m+4=3m
=>2m^2-7m+4=0
=>\(m=\dfrac{7\pm\sqrt{17}}{4}\)
khi X = 100 ( phút ) thì Y = 40 ( nghìn đồng )
\(\Rightarrow\)\(40=a\times100+b\)
khi X = 40 ( phút ) thì Y = 28 ( nghìn đồng )
\(\Rightarrow28=a\times40+b\)
Hệ phương trình có tập nghiệm là
\(a=\frac{1}{5}=0,2\)
\(b=20\)
Trả lời:
Trong tháng 5 bạn Nam gọi 100 phút hết 40 nghìn, thay vào phương trình y=ax+b, ta có:
40= 100a+b <=> 100a+b= 40 (1)
Tháng 6 bạn Nam gọi 40 phút hết 28 nghìn đồng, ta có:
28= 40a+b <=> 40a+b=28 (2)
lấ (1)-(2) vế theo vế=> 60a=12
=> a= 1/5
thay a=1/5 vào PT (1)
=> b=20
Vậy ta có y=\(\frac{1}{5}\)x+20
- Gọi phần bể vòi thứ nhất, thứ hai chảy được trong 1 phút lần lượt là \(x,y\left(0< x,y< 1\right)\)
Đổi 1h30p=90p
- Hai vòi nước cùng chảy vào 1 bể cạn thì sau 1h30p đầy bể nên:
\(90\left(x+y\right)=1\Rightarrow x+y=\dfrac{1}{90}\left(1\right)\)
- Vòi 1 chảy trong 15p rồi đến vòi 2 chảy tiếp trong 20p được 1/5 bể nên:
\(15x+20y=\dfrac{1}{5}\left(2\right)\)
(1), (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x+15y=\dfrac{1}{6}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\5y=\dfrac{1}{30}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{225}\\y=\dfrac{1}{150}\end{matrix}\right.\)
Thời gian vòi 1 chảy để đầy bể: \(1:\dfrac{1}{225}=225\) phút = 3,75h.
Thời gian vòi 2 chảy để đầy bể: \(1:\dfrac{1}{150}=150\) phút=2,5h.
Để giải quyết bài toán này, chúng ta cần xác định lượng nước mà mỗi vòi chảy vào bể trong một giờ.
Gọi x là lượng nước mà mỗi vòi chảy vào bể trong một giờ. Theo giả thiết, khi mở cả hai vòi trong một giờ, bể sẽ được 1/3 đầy. Vì vậy, lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x (do có hai vòi).
Theo giả thiết ban đầu, nếu hai vòi cùng chảy vào bể trong 6 giờ, bể sẽ đầy. Với lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x, ta có:
6 * 2x = 1 (bể đầy)
Từ đó, ta có:
12x = 1
x = 1/12
Vậy, mỗi vòi chảy riêng thì để bể đầy, mỗi vòi sẽ mất 1/12 giờ, hay khoảng 5 phút.
Lưu ý rằng đây là một bài toán giả định, và kết quả phụ thuộc vào giả thiết ban đầu.
Gọi thời gian chảy một mình đầy bể của vòi 1 và vòi 2 lần lượt là a,b
Theo đề, ta có hệ:
1/a+1/b=1/1,5 và 1/4*1/a+1/3*1/b=1/5
=>a=15/4 và b=5/2