Con lắc đơn chiều dài 40cm đang đứng yên ở vị trí cân bằng. Lúc t = 0 truyền cho con lắc vận...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Ta có: \(v=\omega\sqrt{s^2_0-s^2}=\sqrt{gl\left(\alpha^2_0-a^2_1\right)}\)\(=0,271\left(m\right)=27,1\left(cm\text{/}s\right)\)

19 tháng 8 2016

v subscript m a x end subscript equals omega S subscript 0 equals square root of g over l end root l alpha subscript 0 equals 0 comma 313 space m divided by s

open parentheses v over v subscript m a x end subscript close parentheses squared plus open parentheses alpha over alpha subscript 0 close parentheses squared equals 1 rightwards double arrow v equals 0 comma 271 space m divided by s=2 7,1  cm/s

27 tháng 7 2016

Thiếu năng lượng dao động của con lắc bạn ơi.

8 tháng 10 2016

Năngl lượng là 0.1mJ và tốc độ là π(cm/s)

1 tháng 7 2016

\(\omega=\sqrt{\dfrac{g}{l}}=\sqrt{\dfrac{9,8}{0,2}}=7(rad/s)\)

t = 0 vật qua li độ 30 theo chiều dương \(\Rightarrow \varphi = -\dfrac{\pi}{6}\) rad

Vậy PT li độ góc: \(\alpha=6\cos(7t-\dfrac{\pi}{3})(^0)\)

+ Áp dụng: \(v=\sqrt{2gl(\cos\alpha-\cos\alpha_0)}\)

\(\Rightarrow v=\sqrt{2.9,8.0,2(\cos3^0-\cos6^0)}=...\)

5 tháng 6 2016

Biên độ: \(A^2=x^2+\dfrac{v^2}{\omega^2}=(2\sqrt 3)^2+\dfrac{(20\sqrt 2)^2}{(10\sqrt 2)^2}\)

\(\Rightarrow A = 4cm\)

\(\cos\varphi = \dfrac{x}{A}=\dfrac{2\sqrt 3}{4}\)

\(v>0\Rightarrow \varphi < 0\)

Suy ra: \(\varphi=-\dfrac{\pi}{6}(rad)\)

Vậy: \(x=4\cos(10\sqrt 2 t-\dfrac{\pi}{6})(cm)\)

6 tháng 6 2016

\(A^2=x^2+\frac{v^2}{\omega^2}\Rightarrow A=4cm.\)

 

 Hỏi đáp Vật lý\

Điểm M thỏa mãn có vận tốc dương và li độ 2 căn 3. Tại đó pha ban đầu là -30 độ.

=> \(x=4\cos\left(10\sqrt{2}t-\frac{\pi}{6}\right).\)

25 tháng 6 2016

T=4s

thời gian ngắn nhất = T/6 = 2/3s

27 tháng 6 2016

c.ơn bạn

26 tháng 9 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

+ Tần số góc: \(\omega = \frac{2\pi}{T}=\frac{2\pi}{2} = \pi\) (rad/s)
+ Biên độ: \(A=\frac{v_{max}}{\omega}=\frac{31,4}{\pi} = 10 \ (cm)\)
+ t = 0 \(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\) \(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{5}{10}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Phương trình dao động: \(x=10\cos(\pi t + \frac{\pi}{3})\) (cm)
 
O
ongtho
Giáo viên
19 tháng 11 2015

Gia tốc biểu kiến của con lắc nằm trong thang máy chuyển động với gia tốc \(\overrightarrow a\) là:

 \(\overrightarrow {g'} = \overrightarrow {g} -\overrightarrow a \)

Thang máy đi lên chậm dần đều nên \(\overrightarrow g \uparrow \uparrow \overrightarrow a\) => \( {g'} ={g} -a \)

Mà \(a = \frac{g}{2} => g' = g - \frac{g}{2} = \frac{g}{2}.\)

Chu kì của con lắc lúc này là \(T' =2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{2l}{g}} = T\sqrt{2}.\)

 

4 tháng 6 2016
Ta có:
 \(T=2\pi\sqrt{\frac{l}{g}}\)
\(T'=2\pi\sqrt{\frac{l'}{g}}\)
\(\Rightarrow\frac{T'}{T}=\sqrt{\frac{l'}{l}}=\sqrt{2}\Rightarrow T'=2\sqrt{2}s\)
Đáp án D